DOI QR코드

DOI QR Code

A Study on the Surface Characteristics of Dual Phase Steel by Electron Backscatter Diffraction (EBSD) Technique

  • Jeong, Bong-Yong (Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Ryou, Min (M&M Plant Co., Ltd.) ;
  • Lee, Chongmu (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Myung Ho (Department of Materials Science and Engineering, Inha University)
  • 투고 : 2013.05.07
  • 심사 : 2013.11.29
  • 발행 : 2014.02.25

초록

Dual phase steels have a microstructure comprising of a polygonal ferrite matrix together with dispersed islands of martensite. There are clear differences between the image quality (IQ) map of the dual phase and the corresponding ferritic/pearlitic structures, both in the as-heat treated and cold rolled conditions. Electron backscatter diffraction (EBSD) techniques were used to study the evolution substructure of steel due to plastic deformation. The martensite-ferrite and ferrite-pearlite interfaces were observed. The interface can be a source of mobile dislocations which the bands seem to originate from the martensite islands. In particular, the use of image quality is highlighted.

키워드

참고문헌

  1. P. H. Chang, A. G. Preban, Acta Metall. 33, 897 (1985). https://doi.org/10.1016/0001-6160(85)90114-2
  2. Z. Jiang, Z. Guan, J. Lian, Mater. Sci. Eng. A 190, 55 (1995). https://doi.org/10.1016/0921-5093(94)09594-M
  3. P. Tsipouridis, E. Werner, C. Krempaszky, E. Tragl, Steel Res. Int. 77, 654 (2006). https://doi.org/10.1002/srin.200606444
  4. M. Calcagnotto, D. Ponge and D. Raabe, ISIJ International. 48, 1096 (2008). https://doi.org/10.2355/isijinternational.48.1096
  5. M. Calcagnotto, D. Ponge and D. Raabe, Mater. Sci. Engin. A 527, 7832 (2010). https://doi.org/10.1016/j.msea.2010.08.062
  6. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber and M. Calcagnotto, Acta Materialia. 59, 4387 (2011). https://doi.org/10.1016/j.actamat.2011.03.062
  7. T. Sakaki, K. Sugimoto, T. Fukuzat, Acta Metall. 31, 1737 (1983). https://doi.org/10.1016/0001-6160(83)90172-4
  8. A. Rizk, D. L. Bourell, Scripta Metall. 16, 1321 (1982). https://doi.org/10.1016/0036-9748(82)90419-7
  9. D. L. Bourell, A. Rizk, Acta Metall. 31, 609 (1983). https://doi.org/10.1016/0001-6160(83)90051-2
  10. M. Sarwar, R. Priestner, J. Mater. Sci. 31, 2091 (1996). https://doi.org/10.1007/BF00356631
  11. C. L. Magee, R. G. Davie: Acta Metall. 20. 1031 (1972) https://doi.org/10.1016/0001-6160(72)90137-X
  12. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010). https://doi.org/10.1016/j.msea.2010.01.004
  13. M. Kurita, K. Toyama, S. Nomura and K. Kunishige, J. of ISIJ. 81, 1091 (1995).
  14. D. A. Korzekwa, D. K. Matlock and G. Krauss, Met. Trans. A 1221 (1984).
  15. M. Erdogan and S. Tekeli, Mater. and Design. 23, 597 (2002).
  16. Y. D. Huang, W. Y. Yang and Z. Q. Sun, J. of Mater. Processing Technol. 134, 19 (2003). https://doi.org/10.1016/S0924-0136(02)00272-8
  17. F. J. Humphreys and M. Ferry, Mater. Sci. Technol. 13, 85 (1997). https://doi.org/10.1179/mst.1997.13.1.85
  18. A. J. Wilkinson, Mater. Sci. Tech. 13, 79 (1997). https://doi.org/10.1179/mst.1997.13.1.79
  19. B. K. Kim and J. A. Szpunar, Scripta Mater. 44, 2605 (2001). https://doi.org/10.1016/S1359-6462(01)00942-3
  20. B. Y. Jeong, Korean J. Met. Mater. 50, 867 (2012).
  21. M. P. Black and R. L. Higginson, Scripta Mater. 41, 125 (1999). https://doi.org/10.1016/S1359-6462(99)00051-2
  22. F. J. Humphreys, Journal of Mater. Sci. 36, 3833 (2001). https://doi.org/10.1023/A:1017973432592
  23. A. W. Wilson, J. D. Madison and G. Spanos, Scripta Mater. 45, 1335 (2001). https://doi.org/10.1016/S1359-6462(01)01137-X
  24. J. M. Moyer and G. S. Ansell, Metall. Trans. A. 1785 (1975).
  25. N. K. Balliger and T. Gladman, Met. Sci. 15, 95 (1981).
  26. W. C. Leslie, McGraw-Hill, NY, 97 (1981).
  27. M. Kumar, A. J. Schwarz and W. E. King, Mater. Sci. and Eng. A 309-310, 78 (2001). https://doi.org/10.1016/S0921-5093(00)01771-8
  28. T. Sakaki, K. Sugimoto, T. Fukuzato, Acta Metall. 31, 1737 (1983)] https://doi.org/10.1016/0001-6160(83)90172-4
  29. C. L. Magee, R. G. Davies, Acta Metall. 19, 345 (1971). https://doi.org/10.1016/0001-6160(71)90102-7
  30. M. Kamaya, Ultramicroscopy, 11, 1189 (2011).
  31. S. Wronski, J. Tarasiuk, B. Bacroix, A. Baczmanski, C. Braham, Mater. Characterization, 73, 52 (2012). https://doi.org/10.1016/j.matchar.2012.07.016

피인용 문헌

  1. Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data vol.86, pp.3, 2016, https://doi.org/10.1007/s00419-015-1044-1
  2. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior vol.659, 2016, https://doi.org/10.1016/j.msea.2016.02.048
  3. Heterogeneous Strain Distribution and Saturation of Geometrically Necessary Dislocations in a Ferritic-Pearlitic Steel during Lubricated Sliding 2018, https://doi.org/10.1002/adem.201700810
  4. Phase Identification of Dual-Phase (DP980) Steels by Electron Backscatter Diffraction and Nanoindentation Techniques vol.22, pp.01, 2016, https://doi.org/10.1017/S1431927615015779