DOI QR코드

DOI QR Code

A Study on Development of Freshwater Fish Shelter and Evaluation of Water Quality for the Reduction of Thermal Stress in Shallow Pond

얕은 연못에서 담수 어류의 열성 스트레스 저감을 위한 피난처 개발 및 수질환경 조사 연구

  • Lee, Saeromi (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Ahn, Chang Hyuk (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Joo, Jin Chul (Department of Civil & Environmental Engineering) ;
  • Song, Ho Myeon (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Jae Roh (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology)
  • 이새로미 (한국건설기술연구원 환경연구실) ;
  • 안창혁 (한국건설기술연구원 환경연구실) ;
  • 주진철 (한밭대학교 건설환경공학과) ;
  • 송호면 (한국건설기술연구원 환경연구실) ;
  • 박재로 (한국건설기술연구원 환경연구실)
  • Received : 2014.12.08
  • Accepted : 2014.12.22
  • Published : 2014.12.31

Abstract

The purpose of this study evaluates the water quality of artificial deep pool (ADP) during the late spring and summer. we monitored the water quality, as pH, dissolved oxygen (DO), temperature and conductivity at two stations (St. 1. open water, St. 2. in the ADP). The water quality in the ADP is very stable, and temperature and DO are lower than the open water (average value; temperature $1.4{\sim}3.2^{\circ}C$, DO 2.4~3.6 mg/L). In particular, daily variation of temperature in the open water showed above $4^{\circ}C$, but ADP remained stable. The water quality was analyzed using two-way analysis of variance (ANOVA). The results of the analysis showed difference about temperature, pH, DO, conductivity (two-way ANOVA, p<0.05). The ADP has created an aqua environment in thermal and DO gradients by depth. About 1.2 m, Temperature and DO were sharply decreased. The Rhodeus uyekii is dominant species in pond of this study. The ADP offers optimum water temperature ($16.5{\sim}18.5^{\circ}C$) to the Rhodeus uyekii about spawning. Consequently, the ADP offers stable habitat than open water for fish and aquatic organisms during the summer. It is also a good shelter for fish from a thermal stress.

본 연구는 얕은 연못에 시공된 지하 매립형 어류 피난처 구조물인 artificial deep pool (ADP)을 대상으로 늦봄~여름기간 동안 수질환경을 평가하고 그 특징을 파악하고자 하였다. 개방수역인 St. 1과 ADP인 St. 2로 구분하여 분석한 결과, St. 2는 St. 1보다 평균적으로 수온 $1.4{\sim}3.2^{\circ}C$, DO 2.4~3.6 mg/L 낮았고 일수질변동(daily water quality fluctuation)이 적은 안정된 공간으로 나타났다. 특히 수온의 일변화(daily variations)는 St. 1에서 ${\geq}4^{\circ}C$을 보였으나, St. 2에서는 거의 변화가 없었기 때문에 고수온이 지속될 때 어류가 피난 공간으로 활용할 수 있음을 시사하였다. 이화학적 수질은 St. 1과 St. 2에서 큰 차이가 없었지만, 수온, pH, DO, 전기전도도에 대해서는 서로 뚜렷하게 다른 공간임을 나타내었다(two-way ANOVA, P<0.05). ADP 내부는 수심별로 thermal and DO gradient가 나타났으며, 수심 약 1.2 m 이후부터 급격히 감소하였다. 이러한 수질환경은 얕은 연못에서 어류의 서식 및 산란에 영향을 미치며, 본 연구의 조사지점의 연못에서는 각시붕어(Rhodeus uyekii)가 우점하는 것으로 보아, ADP가 적용되면서 납자루아과인 각시붕어의 적정 산란수온($16.5{\sim}18.5^{\circ}C$)을 제공하여 각시붕어가 서식하기 좋은 환경을 조성한 것으로 판단된다. 또한, ADP는 여름철에 수온이 높고, 변동이 큰 외부환경보다 낮은 수온을 일정하게 유지하여 수온변동 및 고온에 민감한 어종에게 좋은 피난처로 활용될 것으로 여겨진다.

Keywords

References

  1. Davis, M. W., "Fish stress and mortality can be predicted using reflex impairment," Fish & Fisheries, 11(1), 1-11(2010). https://doi.org/10.1111/j.1467-2979.2009.00331.x
  2. Amisah, S. and Cowx, I. G., "Response of the fish populations of the River Don in South Yorkshire to water quality and habitat improvements," Environ. Pollut., 108(2), 191-199 (2000). https://doi.org/10.1016/S0269-7491(99)00190-6
  3. Mo, W. Y., Cheng, Z., Choi, W. M., Man, Y. B., Liu, Y. and Wong, M. H., "Application of food waste based diets in polyculture of low trophic level fishL Effect on fish growth, water quality and plankton density," Mar. Pollut. Bullet., 85 (2), 803-809(2014). https://doi.org/10.1016/j.marpolbul.2014.01.020
  4. Hokanson, K. E., "Temperature requirement of somepecids and adaptatopns to the seasonal temperature cycle," J. Fish. Res. Board Can., 34, 1524-1550(1977). https://doi.org/10.1139/f77-217
  5. Nicieza, A. G. and Metcalfe, N. B., "Growth compensation in juvenile Atlantic salmon: responses to depresses temperature and food availability," Ecol., 78, 2385-2400(1997). https://doi.org/10.1890/0012-9658(1997)078[2385:GCIJAS]2.0.CO;2
  6. Bridget, S. G. and Fisher, R., "Temperature influences swimming speed, growth and larval duration in coral reef fish larval," J. Experimental Mar. Biol. Ecol., 299(1), 115-132(2004). https://doi.org/10.1016/j.jembe.2003.09.001
  7. Wetzel, R. G., "Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems," Hydrobiologia, 229(1), 181-198(1992). https://doi.org/10.1007/BF00007000
  8. Muller, U., "Periphytic primary production during spring. A sink or source of oxygen in the littoral zone," Limnologica, 30(2), 169-174(2000). https://doi.org/10.1016/S0075-9511(00)80012-2
  9. Frankiewicz, P. and Wojtal-Frankiewicz, A., "Two different feeding tactics of young-of-the-year perch, Perca fluviatilis L., inhabiting the littoral zone of the lowland Sulejow Reservoir (Central Poland)," Ecohydrol. Hydrobiol., 12(1) 35-41(2012).
  10. Durigan, J. G., Sipauba-Tavares, L. H. and Oliveira, D. B. S., "Estudo limnologico em viveiros de psicultura. Parte I, variacao nictimeral de fatores fisicos quimicos e biologicos," Acta Limnologica Brasiliensis., 4, 211-223(1992).
  11. Lefebure, R., Effects of temperature and terrestrial carbon on fish growth and pelagic food web efficiency, Department of Ecology and Environmental Science, Umea University, Sweden(2012).
  12. Nowosad, J., Targonska, K., Chwaluczyk, R., Kaszubowski, R. and Kucharczyk, D., "Effect of temperature on the effectiveness of artificial reproduction of dace under laboratory and field condotions," J. Thermal Biol., 45, 62-68(2014). https://doi.org/10.1016/j.jtherbio.2014.07.011
  13. Bevelhimer, M. and Bennett, W., "Assessing cumulative thermal stress in fish during chronic intermittent exposure to high temperatures," Environ. Sci. Policy, 3, S211-S216(2000). https://doi.org/10.1016/S1462-9011(00)00056-3
  14. McGrath, M., Climate change "may shrink fish," Science Reporter, BBC World Service. BBS NEWS Science & Environment(2012).
  15. Millidine, K. J., Armstrong, J. D. and Metcalfe, N. B., "Presence of Shelter Reduces Maintenance Metabolism of Juvenile Salmon," Funct. Ecol., 20(5), 839-845(2006). https://doi.org/10.1111/j.1365-2435.2006.01166.x
  16. Finstad, A. G., Einum, S., Forseth, T. and Ugedal, O., "Shelter Availability Affects Behaviour, Size-Dependent and Mean Growth of Juvenile Atlantic salmon," Freshwater Biol., 52 (9), 1710-1718(2007). https://doi.org/10.1111/j.1365-2427.2007.01799.x
  17. Matsuzaki, S. S., Sakamoto, M., Kawabe, K. and Takamura, N., "A Laboratory Study of the Effects of Shelter Availability and Invasive Crayfish on the Growth of Native Stream Fish," Freshwater Biol., 57(4), 874-882(2012). https://doi.org/10.1111/j.1365-2427.2012.02743.x
  18. Fuiman, L. A. and Magurran, A. E., "Development of Predator Defences in Fishes," Rev. Fish Biol. Fisheries, 4(2), 145-183(1994). https://doi.org/10.1007/BF00044127
  19. Almany, G. R., "Differential Effects of Habitat Complexity, Predators and Competitors on Abundance of Juvenile and Adult Coral Reef Fishes," Oecologia, 141(1), 105-113(2004). https://doi.org/10.1007/s00442-004-1617-0
  20. Ahn, C. H., Joo, J. C., Lee, S., Oh, J. H., Ahn, H. and Song, H. M., "An experimental approach to secure freshwater fish shelter according to the water level fluctuations in a shallow pond," J. Kor. Soc. Environ. Eng., 35(9), 666-674(2013). https://doi.org/10.4491/KSEE.2013.35.9.666
  21. Fraser, D. F. and Cerri, R. D., "Experimental Evaluation of Predator-Prey Relationships in a Patchy Environment: Consequences for Habitat Use Patterns in Minnows," Ecol., 63 (2), 307-313(1982). https://doi.org/10.2307/1938947
  22. American Public Health Association (APHA), Standard methods for the examination of water and wastewater, 21th edition.; American Public Health Association, Washington, D. C., USA, pp. 9-72(2005).
  23. Sutherland, D. L., Turnbull, M. H. and Craggs, R. J. "Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds," Water Res., 53(15), 271-281(2014). https://doi.org/10.1016/j.watres.2014.01.025
  24. Mann, C. J. and Wetzel, R. G., "Dissolved organic carbon and its utilization in a riverine wetland ecosystem," Biogeochem., 31(2), 99-120(1995).
  25. Belevantsev, V. I., Malkova, V. I., Ryzhikh, A. P., Smolyakov, B. S. and Anoshin, G. N., "One of the aspects of chemical and thermodynamic modeling in the solution of complex problems of the description of aqueous-system states," Khimiya v Interesakh Ustoichivogo Razvitiya, 12(6), 757-767(2004).
  26. Seki, H., Takahashi, M., Hara, Y. and Ichimura, S., "Dynamics of dissolved oxygen during algal bloom in Lake Kasumigaura," Jap. Water Res., 14(2), 179-183(1979).
  27. Douglas, M. E., Marsh, P. C. and Minckley, W. L., "Indigenous fishes of western North America and the hypothesis of competitive displacement: Meda Fulgida (Cyprinidae) as a Case Study," Copeia, 1, 9-19(1994).
  28. Brett, J. R., Environmental factors and growth. In Fish Physiology, Vol. 8 (Hoar, W. S. Randall, D. J. and Brett, J. R., eds), pp. 599-675. New York: Academic Press(1979).
  29. Persson, L., "Temperature-Induced Shift in Foraging Ability in Two Fish Species, Roach (Rutilus rutilus) and Perch (Perca fluviatilis): Implications for Coexistence between Poikilotherms," J. Animal Ecol., 55, 829-839(1986). https://doi.org/10.2307/4419
  30. Persson, L., Leonardsson, K., De Roos, A. M., Gyllenberg, M. and Christensen, B., "Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model," Theoret. Populat. Biol., 54(3), 270-293(1998). https://doi.org/10.1006/tpbi.1998.1380
  31. Bystrom, P., Anderson, J., Kiessling, A. and Eriksson, L. O., "Size and temperature dependent foraging capacities and metabolism: consequences for winter starvation mortality in fish," OIKOS, 115(1), 43-52(2006). https://doi.org/10.1111/j.2006.0030-1299.15014.x
  32. Englund, G., Ohlund, G. C. Hein, L. and Diehl, S., "Temperature dependence of the functional response," Ecol. Lett., 14(9), 914-921(2011). https://doi.org/10.1111/j.1461-0248.2011.01661.x
  33. Elliott J. M. and Hurley M. A., "A functional model for maximum growth of Atlantic salmon parr, Salmo salar from two populations in north-west England," Funct. Ecol., 11 (5), 592-603(1997). https://doi.org/10.1046/j.1365-2435.1997.00130.x
  34. Jobling, M., Fish bioenergetics, Chapman and Hall, London (1995).
  35. Ahn., C.-M., "Effects of Photoperiod and Water Temperature on the Reproductive cycle of the Spring-Spawning Bitterling, Rhodeus uyekii (Pisces: Cyprinidae)," Kor. J. lchthyol., 7(1), 43-55(1995).
  36. Carveth, C. J., Widmer, A. M., Bonar, S. A. and Simms, J. R., "An examination of the effects of chronic static and fluctuating temperature on the growth and survival of spikedace, Meda fulgida, with implications for management," J. Thermal Biol., 32(2), 102-108(2007). https://doi.org/10.1016/j.jtherbio.2006.11.002
  37. Johnstone, H. C. and Rahel, F. J., "Assessing temperature tolerance of Bonneville cutthroat trout based on constant and cycling thermal regimes," Trans. Am. Fish. Soc., 132 (1), 92-99(2003). https://doi.org/10.1577/1548-8659(2003)132<0092:ATTOBC>2.0.CO;2
  38. Helfman, G. S., Collette, B. B. and Facey, D. E., The Diversity of Fishes, Blackwell Science, Malden, Massachusetts (1999).
  39. Takahara, T., Honjo, M. N., Uchii, K., Minamoto, T., Doi, H., Ito, T. and Kawabata, Z., "Effects of daily temperature fluctuation on the survival of carp infected with Cyprinid herpesvirus 3," Aquaculture, 433(20), 208-213(2014). https://doi.org/10.1016/j.aquaculture.2014.06.001
  40. Kramer, D. L., "Dissolved oxygen and fish behavior," Environ. Biol. Fishes, 18(2), 81-92(1987). https://doi.org/10.1007/BF00002597
  41. Fang, X., Stefan, H. G., Eaton, J. G., McCormick, J. H., Alam, S. R., "Simulation of thermal/dissolved oxygen habitat for fishes in lakes under different climate scenarios Part 2. Cold-water fish in the contiguous US," Ecol. Modell., 172(1), 39-54(2004a). https://doi.org/10.1016/S0304-3800(03)00285-0
  42. Fang, X., Stefan, H. G., Eaton, J. G., McCormick, J. H. and Alam, S. R., "Simulation of thermal/dissolved oxygen habitat for fishes in lakes under different climate scenarios Part 3. Warm-water fish in the contiguous US," Ecol. Modell., 172(1), 55-68(2004b). https://doi.org/10.1016/S0304-3800(03)00286-2