DOI QR코드

DOI QR Code

In vitro anti-cancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines

꽃송이버섯(Sparassis latifolia) 추출물 소수성 분획의 항암 활성

  • Choi, Moon-Hee (Department of Chemical Engineering, Graduate School of Engineering, Chosun University) ;
  • Han, Hyo-Kyung (College of Pharmacy, Dongguk University) ;
  • Lee, Yong-Jo (Department of Chemical Engineering, Graduate School of Engineering, Chosun University) ;
  • Jo, Han-Gyo (Department of Chemical Engineering, Graduate School of Engineering, Chosun University) ;
  • Shin, Hyun-Jae (Department of Chemical Engineering, Graduate School of Engineering, Chosun University)
  • 최문희 (조선대학교 대학원 화학공학과) ;
  • 한효경 (동국대학교 약학대학 약학과) ;
  • 이용조 (조선대학교 대학원 화학공학과) ;
  • 조한교 (조선대학교 대학원 화학공학과) ;
  • 신현재 (조선대학교 대학원 화학공학과)
  • Received : 2014.11.03
  • Accepted : 2014.12.17
  • Published : 2014.12.31

Abstract

The use of mushrooms has immense potential in many diverse applications. Until now, more than 3,000 species are consumed around the world, and more than 100 have shown promising clinical activity against cancer and other chronic diseases. Sparassis latifolia (formerly S. crispa) is an edible mushroom that harbors ${\beta}$-glucan reported to possess immunostimulatory and anticancer properties. However there have been no reports on the anticancer activity of hydrophobic fractions of S. latifolia. In this study, the anticancer activities of S. latifolia extract and hydrophobic fractions were investigated using AGS (stomach cancer), A529 (lung cancer), and HepG2 (liver cancer) cell lines. In cytotoxicity results of A529 cells, fractions of A2, A3, A4, A6, A7, A8, A9, and A10 in all 12 fractions show low $IC_{50}$ values. For HepG2 cells, A7 fraction results in the lowest $IC_{50}$ value while A7, A8, and A11 fractions show low $IC_{50}$ values in AGS cells. S. latifolia extract lead to low cell viability in cancer cells, compared to positive control of paclitaxel. A compound with molecular weight of 181 were detected using HPLC-MS but not identified yet. As a result, the hydrophobic fractions of S. latifolia EtOH extract would be a possible candidate as natural anticancer agents in the future.

본 실험에서는 꽃송이버섯 (Sparassis crispa, formerly S. crispa) 에탄올 추출물의 소수성 분획을 분리하고 각 분획의 DPPH 항산화 활성과 위암 (AGS), 폐암 (A529), 간암 (HepG2) 세포주를 이용한 항암 활성을 MTT assay를 통해 확인 하였다. SOCC를 사용하여 총 18개의 fraction으로 분획하였고 TLC와 세포주를 이용한 항암 활성 확인을 통하여 5개의 fraction으로 압축하였다. 항암활성이 높은 5개의 fraction은 HPLC-MS를 통해 각 분획물을 분석한 결과 항산화 활성을 보이지 않았으며 약 181.0의 분자량을 가진 물질이 지표물질로 확인되었으므로 이 물질의 화학식 동정을 위하여 추가실험이 필요하다. 세포주를 이용한 항암실험 결과 꽃송이버섯 추출물은 위암 (AGS), 폐암 (A529), 간암 (HepG2) 세포주 모두에서 양성대조군인 paclitaxel보다 낮은 세포 생존율을 보여 주었으며($IC_{50}$ value), 이것은 추후 꽃송이버섯 추출물에 포함된 항암 물질 분리 연구를 위한 기초연구 결과로서 무척 의미가 크다고 할 수 있다.

Keywords

References

  1. Adachi Y, Okazaki M, Ohno N, Yadomae T. 1994. Enhancement of cytokine production by macrophages stimulated with ($1{\rightarrow}3$)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Bio Pharm Bull. 17(12): 1554-1560. https://doi.org/10.1248/bpb.17.1554
  2. An SJ, Pae HO, Oh GS, Choi BM, Jeong S, Jang SI, Oh H, Kwon TO, Song CE, Chung HT. 2002. Inhibition of TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 productions and NF-${\kappa}B$ activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int Immunopharmacol. 2(8): 1173-1181. https://doi.org/10.1016/S1567-5769(02)00085-1
  3. Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ. 1997. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res Comm Mol Pathol Pharmacol. 95(2): 179-189.
  4. Chandrasekaran G, Oh DS, Shin HJ. 2011. Properties and potential applications of the culinary-medicinal cauliflower mushroom, Sparassis crispa Wulf.:Fr. (Aphyllophooromycetideae): A review. Int J Med Mushroom 13(2): 177-183. https://doi.org/10.1615/IntJMedMushr.v13.i2.100
  5. Chung KS, Lee WC. 2005. Antitumor immunoactivities of the combinations containing the hot water extract of Sparassis crispa. J Pharm Sci(C.N.U.). 20: 58-63.
  6. Choi ES, Oh DS, Shin HJ. 2011. Study on mycelial growth and ${\beta}$-glucan content by adjusting the culture medium compositions. The Kor Soc Mushroom Sci. 15(1): 51-51.
  7. Fryer MJ. 1992. The antioxidant effects of thylakoid Vitamin E (${\alpha}$-tocopherol). Plant Cell Environ. 15(4): 381-392. https://doi.org/10.1111/j.1365-3040.1992.tb00988.x
  8. Ferreira ICFR, Barros L, Abreu RMV. 2009. Antioxidants in Wild Mushrooms. Curr Med Chem. 16(12): 1543-1560. https://doi.org/10.2174/092986709787909587
  9. Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, Xing PX, Cheung NKV, Ross GD. 2004. Mechanism by which orally administered ${\beta}$-1, 3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol. 173(2): 797-806. https://doi.org/10.4049/jimmunol.173.2.797
  10. Han DS, Jeon SW, Kim HJ. 2009. Study on the Antioxidant and Anticancer Effect of Extract of Stamens of Nelumbo nucifera and Kaempferol. Kor J Herbology. 24(1): 23-33.
  11. Kawagishi H, Hayashi K, Tokuyama S, Hashimoto N, Kimura T, Dombo M. 2007. Novel bioactive compound from the Sparassis crispa mushroom. Biosci Biotechnol Biochem. 71(7): 1804-1806. https://doi.org/10.1271/bbb.70192
  12. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ. 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agr Food Chem. 56: 7265-7270. https://doi.org/10.1021/jf8008553
  13. Kim HJ, Han DS, Jeon SW. 2009. Study on the antioxidant and anticancer effects of extract of stamens of Nelumbo nucifera and kaemferol. Kor J Herbol. 24(1): 23-33.
  14. Kim IK, Yun YC, Shin YC, Yoo J. 2013. Effect of Sparassis crispa Extracts on Immune Cell Activation and Tumor Growth Inhibition. J Life Sci. 23(8): 984-988. https://doi.org/10.5352/JLS.2013.23.8.984
  15. Lee SY, Lee YG, Byeon SE, Han S, Choi SS, Kim AR, Lee J, Lee SJ, Hong NS, Cho JY. 2010. Mitogen activated protein kinases are prime signalling enzymes in nitric oxide porduction induced by solubel ${\beta}$-glucan from Sparassis crispa. Arch Pharm Res 33(11): 1753-1769. https://doi.org/10.1007/s12272-010-1107-3
  16. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol. 7(6): 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
  17. Oh DS, Wang SJ, Kim HS, Wi AJ, Yoon SY, Park HS, Park HH. 2014. Optimal medium compostion of cauliflower mushroom(Sparassis latifolia) cultivation using douglas fir wood chip and comparison of the fruiting body. J Kor Wood Sci Technol. 42(4): 428-438. https://doi.org/10.5658/WOOD.2014.42.4.428
  18. Ohno N, Miura NN, Nakajima M, Yadomae T. 2000. Antitumor 1, 3-beta-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull. 23(7): 866-872. https://doi.org/10.1248/bpb.23.866
  19. Ohno N, Harada T, Masuzawa S, Miura NN, Adachi Y, Nakajima M, Yadomae T. 2002. Antitumor Activity and Hematopoietic Response of a ${\beta}$-Glucan Extracted from an Edible and Medicinal Mushroom Sparassis crispa Wulf.: Fr.(Aphyllophoromycetideae). Int J Med Mushrooms. 4(1).
  20. Park H, Lee BH, Oh DS, Ka KH, Bak WC, LEE HJ. 2005. Cultivation of cauliflower mushroom (Sparassis crispa) using coniferous sawdust-based media with barley flours. J Kor For En. 24(2): 31-36.
  21. Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SM, Somasundaram R. 2006. Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem. 54(26): 9764-9772. https://doi.org/10.1021/jf0615707
  22. Ryu SR, Ka KH, Park H, Bak WC, Lee BH. 2009. Cultivation characteristics of Sparassis crispa strains using sawdust medium of Larix kaempferi. Kor J Mycol. 37(1): 49-54. https://doi.org/10.4489/KJM.2009.37.1.049
  23. Trapnell BC, Whitsett JA. 2002. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophagemediated innate host defense. Annu Rev Physiol. 64(1): 775-802. https://doi.org/10.1146/annurev.physiol.64.090601.113847

Cited by

  1. Preparation of fermentation broth of Sparassis latifolia containing soluble β-glucan using four Lactobacillus species vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.50
  2. Mushroom Cosmetics: The Present and Future vol.3, pp.4, 2016, https://doi.org/10.3390/cosmetics3030022
  3. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
  4. Effects of Sparassis crispa in Medical Therapeutics: A Systematic Review and Meta-Analysis of Randomized Controlled Trials vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051487