DOI QR코드

DOI QR Code

Microalgae Cultivation Using LED Light

LED광원을 활용한 미세조류의 배양

  • Kim, Dae Geun (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Choi, Yoon-E (LED Agri-bio Fusion Technology Research Center, Chonbuk National University, Iksan Campus)
  • 김대근 (전북대학교 생물공정공학과) ;
  • 최윤이 (LED농생명융합기술연구센터)
  • Received : 2013.09.27
  • Accepted : 2013.12.12
  • Published : 2014.02.01

Abstract

Microalgae have been considered as a promising microorganism in the field of bio-industry due to their abilities to fix carbon dioxide as well as biosynthesize valuable secondary metabolites. Of many lighting sources for microalgal cultivation, LED (Lighting Emitting Diode) has been emerged as the appropriate choice with multiple advantages over the conventional bulbs. However, it is only in recent years that we have witnessed the possibility of application of LED into microalgae cultivation system. LED will serve as an evolutionary lighting source for microalgae cultivation system and open the frontier for integrative bio-industries. In this paper, we present the comprehensive review on the recent trends of LED applications into microalgal biotechnology.

미세조류는 이산화탄소를 제거하고 산업적으로 유용한 다양한 이차 대사물질을 생산해 내는 광합성 미생물로 생물산업분야에서 주목 받고 있는 유용한 자원이다. 이러한 미세조류를 실내에서 효과적으로 배양하기 위해서는 무엇보다도 효율적인 광원이 필수적이다. 최근 발달하는 LED광원은 광원의 크기가 작고, 에너지 효율이 우수하며, 특정 파장만 조사할 수 있다는 점 등의 다른 인공광원과 차별되는 많은 장점을 가지고 있다. LED광원을 미세조류의 배양에 적용하는 연구는 최근에 와서야 점차 시도되고 있는 실정이며, 아직까지 실험실 규모의 실험과 대표적인 특정 종 위주의 결과들만 나오고 있어, LED광원을 미세조류의 산업적인 배양에 적용하기 위해서는 더 많은 세부적인 연구 결과가 요구된다. 하지만 LED 조명을 미세조류 배양 분야에 적용하는 것은 효과적인 접근으로 생각되며, BT(Bio Technology) 산업에 새로운 지평을 열 것으로 생각된다. 따라서 본고에서는 최근 연구되고 있는 LED광원을 이용한 미세조류의 배양 현황 및 그 가능성에 대해서 조사하고, 향후 나아갈 방향에 대해서 기술해 보았다.

Keywords

References

  1. Apel, K. and Hirt, H., "Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction," Annu. Rev. Plant Biol., 55, 373(2004). https://doi.org/10.1146/annurev.arplant.55.031903.141701
  2. Arumugam, P., Inbakandan, D., Ramasamy, M. and Murugan, M., "Encapsulated Spirulina Powder Feed for the Nutritional Enrichment of Adult Brine Shrimp (Artemia salina)," J. Appl. Aquac., 25, 265(2013). https://doi.org/10.1080/10454438.2013.817182
  3. Azizkhani, M., Baghestani, M., Bagheri, H. and Nikmanesh, M., "A Review on the Application of Two Microalgae (Chlorella vulgaris, Spirulina platenesis) as Biofilters to Eliminate Heavy Metals from Industrial Waste Water," KAUMS J. (FEYZ), 16, 717(2013).
  4. Baba, M., Kikuta, F., Suzuki, I., Watanabe, M. M. and Shiraiwa, Y., "Wavelength Specificity of Growth, Photosynthesis, and Hydrocarbon Production in the Oil-producing Green Alga Botryococcus braunii," Bioresour. Technol., 109, 266(2012). https://doi.org/10.1016/j.biortech.2011.05.059
  5. Behrens, P. W. and Kyle, D. J., "Microalgae as a Source of Fatty Acids," J. Food Lipids, 3, 259(1996). https://doi.org/10.1111/j.1745-4522.1996.tb00073.x
  6. Borowitzka, M. A., "Commercial Production of Microalgae: Ponds, Tanks, and Fermenters," Prog. Industri. Microbiol., 35, 313(1999). https://doi.org/10.1016/S0079-6352(99)80123-4
  7. Bourget, C. M., "An Introduction to Light-emitting Diodes," Hort Sci., 43, 1944(2008).
  8. Carvalho, A. P., Silva, S. O., Baptista, J. M. and Malcata, F. X., "Light Requirements in Microalgal Photobioreactors: An Overview of Biophotonic Aspects," Appl. Microbiol. Biotechnol., 89, 1275(2011). https://doi.org/10.1007/s00253-010-3047-8
  9. Chisti, Y., "Biodiesel from Microalgae," Biotechnol. Adv., 25, 294 (2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  10. Chisti, Y., "Biodiesel from Microalgae Beats Bioethanol," Trends Biotechnol., 26, 126(2008). https://doi.org/10.1016/j.tibtech.2007.12.002
  11. Choi, B., Lim, J.-H., Lee, J. and Lee, T., "Optimum Conditions for Cultivation of Chlorella sp. Fc-21 Using Light Emitting Diodes," Korean J. Chem. Eng., 1(2013). https://doi.org/10.1007/s11814-013-0081-0
  12. Choudhury, N. and Behera, R., "Photoinhibition of Photosynthesis: Role of Carotenoids in Photoprotection of Chloroplast Constituents," Photosynthetica, 39, 481(2001). https://doi.org/10.1023/A:1015647708360
  13. Cordero, B. F., Obraztsova, I., Couso, I., Leon, R., Vargas, M. A. and Rodriguez, H., "Enhancement of Lutein Production in Chlorella Sorokiniana (chorophyta) by Improvement of Culture Conditions and Random Mutagenesis," Mar. Drugs, 9, 1607(2011). https://doi.org/10.3390/md9091607
  14. Courchesne, N. M. D., Parisien, A., Wang, B. and Lan, C. Q., "Enhancement of Lipid Production Using Biochemical, Genetic and Transcription Factor Engineering Approaches," J. Biotechnol., 141, 31(2009). https://doi.org/10.1016/j.jbiotec.2009.02.018
  15. Das, P., Lei, W., Aziz, S. S. and Obbard, J. P., "Enhanced Algae Growth in Both Phototrophic and Mixotrophic Culture Under Blue Light," Bioresour. Technol., 102, 3883(2011). https://doi.org/10.1016/j.biortech.2010.11.102
  16. Decker, J., "Blooming Biofuel: How Algae Could Provide the Solution," Renewable Energy World Magazine(2009).
  17. del Pilar Sanchez-Saavedra, M. and Voltolina, D., "Effect of Bluegreen Light on Growth Rate and Chemical Composition of Three Diatoms," J. Appl. Phycol., 8, 131(1996). https://doi.org/10.1007/BF02186316
  18. Fu, W., Guomundsson, O., Paglia, G., Herjolfsson, G., Andresson, O. S., Palsson, B. O. and BrynjOlfsson, S., "Enhancement of Carotenoid Biosynthesis in the Green Microalga Dunaliella salina with Light-emitting Diodes and Adaptive Laboratory Evolution," Appl. Microbiol. Biotechnol., 1(2013). https://doi.org/10.1007/s00253-012-4502-5
  19. Ge, Z., Zhang, H., Zhang, Y., Yan, C. and Zhao, Y., "Purifying Synthetic High-strength Wastewater by Microalgae Chlorella vulgaris Under Various Light Emitting Diode Wavelengths and Intensities," J. Environ. Health Sci. Eng., 11, 8(2013).
  20. Hallenbeck, P. C. and Benemann, J. R., "Biological Hydrogen Production; Fundamentals and Limiting Processes," Int. J. Hydrogen Energy, 27, 1185(2002). https://doi.org/10.1016/S0360-3199(02)00131-3
  21. Hamid Badawi, G., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K. and Tanaka, K., "Enhanced Tolerance to Salt Stress and Water Deficit by Overexpressing Superoxide Dismutase in Tobacco (Nicotiana tabacum) Chloroplasts," Plant Sci., 166, 919 (2004). https://doi.org/10.1016/j.plantsci.2003.12.007
  22. Hammouda, O., Gaber, A. and Abdelraouf, N., "Microalgae and Wastewater Treatment," Ecotoxicol. Environ. Saf., 31, 205(1995). https://doi.org/10.1006/eesa.1995.1064
  23. Katsuda, T., Lababpour, A., Shimahara, K. and Katoh, S., "Astaxanthin Production by Haematococcus Pluvialis Under Illumination with LEDs," Enzyme Microb. Technol., 35, 81(2004). https://doi.org/10.1016/j.enzmictec.2004.03.016
  24. Katsuda, T., Shimahara, K., Shiraishi, H., Yamagami, K., Ranjbar, R. and Katoh, S., "Effect of Flashing Light from Blue Light Emitting Diodes on Cell Growth and Astaxanthin Production of Haematococcus Pluvialis," J. Biosci. Bioeng., 102, 442(2006). https://doi.org/10.1263/jbb.102.442
  25. Kim, C.-J., Jung, Y.-H., Ko, S.-R., Kim, H.-I., Park, Y.-H. and Oh, H.-M., "Raceway Cultivation of Spirulina Platensis Using Underground Water," J. Microbiol. Biotechnol., 17, 853(2007).
  26. Kumar, S. D. and Nandakumar, R., "Heavy Metal (zinc) Using Immobilized Marine Microalga Chlorella Marina," Pak. J. Biol. Sci., 10(2013).
  27. Lababpour, A., Hada, K., Shimahara, K., Katsuda, T. and Katoh, S., "Effects of Nutrient Supply Methods and Illumination with Blue Light Emitting Diodes (LEDs) on Astaxanthin Production by Haematococcus pluvialis," J. Biosci. Bioeng., 98, 452(2004). https://doi.org/10.1016/S1389-1723(05)00311-7
  28. Munzner, P. and Voigt, J., "Blue Light Regulation of Cell Division in Chlamydomonas reinhardtii," Plant Physiol., 99, 1370(1992). https://doi.org/10.1104/pp.99.4.1370
  29. Makridis, P., Costa, R. A. and Dinis, M. T., "Microbial Conditions and Antimicrobial Activity in Cultures of Two Microalgae Species, Tetraselmis chuii and Chlorella minutissima and Effect on Bacterial Load of Enriched Artemia Metanauplii," Aquaculture, 255, 76(2006). https://doi.org/10.1016/j.aquaculture.2005.12.010
  30. Matsumoto, H., Shioji, N., Hamasaki, A., Ikuta, Y., Fukuda, Y., Sato, M., Endo, N. and Tsukamoto, T., "Carbon Dioxide Fixation by Microalgae Photosynthesis Using Actual Flue Gas Discharged from a Boiler," Appl. Biochem. Biotechnol., 51, 681(1995).
  31. Menon, K. R., Balan, R. and Suraishkumar, G., "Stress Induced Lipid Production in Chlorella vulgaris: Relationship with Specific Intracellular Reactive Species Levels," Biotechnol. Bioeng., 110, 1627(2013). https://doi.org/10.1002/bit.24835
  32. Molina, E., Fernandez, J., Acien, F. and Chisti, Y., "Tubular Photobioreactor Design for Algal Cultures," J. Biotechnol., 92, 113(2001). https://doi.org/10.1016/S0168-1656(01)00353-4
  33. Oh, S. J., Kim, D. I., Sajima, T., Shimasaki, Y., Matsuyama, Y., Oshima, Y., Honjo, T. and Yang, H. S., "Effects of Irradiance of Various Wavelengths from Light-emitting Diodes on the Growth of the Harmful Dinoflagellate Heterocapsa Circularisquama and the Diatom Skeletonema costatum," Fish. Sci., 74, 137(2008).
  34. Renaud, S., Parry, D. and Thinh, L.-V., "Microalgae for Use in Tropical Aquaculture i: Gross Chemical and Fatty Acid Composition of Twelve Species of Microalgae from the Northern Territory, Australia," J. Appl. Phycol., 6, 337(1994). https://doi.org/10.1007/BF02181948
  35. Rosenberg, J. N., Oyler, G. A., Wilkinson, L. and Betenbaugh, M. J., "A Green Light for Engineered Algae: Redirecting Metabolism to Fuel a Biotechnology Revolution," Curr. Opin. Biotechnol., 19, 430(2008). https://doi.org/10.1016/j.copbio.2008.07.008
  36. Ruyters, G., "Effects of Blue Light on Enzymes," Blue Light Effects in Biological Systems, Springer, pp. 283-301(1984).
  37. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J. and Smith, A. G., "Biodiesel from Algae: Challenges and Prospects," Curr. Opin. Biotechnol., 21, 277(2010). https://doi.org/10.1016/j.copbio.2010.03.005
  38. Tamiya, H., Hase, E., Shibata, K., Mituya, A., Iwamura, T., Nihei, T. and Sasa, T., "Kinetics of Growth of Chlorella, with Special Reference to its Dependence on Quantity of Available Light and on Temperature," Algal Culture From Laboratory to Pilot Plant, 204(1953).
  39. Wallen, D. and Geen, G., "Light Quality in Relation to Growth, Photosynthetic Rates and Carbon Metabolism in Two Species of Marine Plankton Algae," Mar. Biol., 10, 34(1971). https://doi.org/10.1007/BF02026764
  40. Wang, C.-Y., Fu, C.-C. and Liu, Y.-C., "Effects of Using Lightemitting Diodes on the Cultivation of Spirulina platensis," Biochem. Eng. J., 37, 21(2007). https://doi.org/10.1016/j.bej.2007.03.004
  41. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. and Ruan, R., "Cultivation of Green Algae Chlorella sp. In Different Wastewaters from Municipal Wastewater Treatment Plant," Appl. Biochem. Biotechnol., 162, 1174(2010). https://doi.org/10.1007/s12010-009-8866-7
  42. Wenke, L., "Light Environmental Management for Artificial Protected Horticulture," Agrotechnol.,(2012).
  43. Wood, B., Grimson, P., German, J. and Turner, M., "Photoheterotrophy in the Production of Phytoplankton Organisms," Prog. Ind. Microbiol., 35, 175(1999). https://doi.org/10.1016/S0079-6352(99)80110-6
  44. Xu, B., Cheng, P., Yan, C., Pei, H. and Hu, W., "The Effect of Varying Led Light Sources and Influent Carbon/nitrogen Ratios on Treatment of Synthetic Sanitary Sewage Using Chlorella vulgaris," World J. Microbiol. Biotechnol., 1(2013). https://doi.org/10.1007/s11274-013-1292-6
  45. Yan, C., Zhang, L., Luo, X. and Zheng, Z., "Effects of Various LED Light Wavelengths and Intensities on the Performance of Purifying Synthetic Domestic Sewage by Microalgae at Different Influent C/N Ratios," Ecol. Eng., 51, 24(2013). https://doi.org/10.1016/j.ecoleng.2012.12.051
  46. Yan, C., Zhao, Y., Zheng, Z. and Luo, X., "Effects of Various LED Light Wavelengths and Light Intensity Supply Strategies on Synthetic High-strength Wastewater Purification by Chlorella vulgaris," Biodegradation., 1(2013). https://doi.org/10.1007/s10532-013-9620-y
  47. Yeh, N. and Chung, J.-P., "High-brightness Leds-energy Efficient Lighting Sources and Their Potential in Indoor Plant Cultivation," Renew. Sust. Energ. Rev., 13, 2175(2009). https://doi.org/10.1016/j.rser.2009.01.027
  48. Yoo, S. J., Oh, S.-K. and Lee, J. M., "Sensitivity Analysis with Optimal Input Design and Model Predictive Control for Microalgal Bioreactor Systems," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 87(2013). https://doi.org/10.9713/kcer.2013.51.1.87

Cited by

  1. A Study of the Growth Characteristics of Starry Flounder Platichthys Stellatus in Accordance with the LED Wavelength vol.39, pp.4, 2015, https://doi.org/10.5916/jkosme.2015.39.4.495
  2. An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.468
  3. Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source vol.27, pp.2, 2016, https://doi.org/10.3807/KJOP.2016.27.2.073
  4. Upgrading of the Hydrophobicity of Larix kaempferi and Liriodendron tulipifera via Torrefaction vol.12, pp.4, 2014, https://doi.org/10.7849/ksnre.2016.12.12.4.070
  5. 미세조류를 이용한 오·폐수 영양염류 제거효율 평가 vol.50, pp.2, 2014, https://doi.org/10.11614/ksl.2017.50.2.187
  6. MLSS와 미세조류가 광합성 산소기반 질산화에 미치는 영향 vol.19, pp.4, 2014, https://doi.org/10.17663/jwr.2017.19.4.508
  7. Chlorella vulgaris를 이용한 양돈폐수 내 영양염류 및 중금속 제거 vol.27, pp.11, 2018, https://doi.org/10.5322/jesi.2018.27.11.1059
  8. LED 광원에 따른 미세조류 Haematococcus pluvialis의 성장 특성 vol.21, pp.10, 2014, https://doi.org/10.5762/kais.2020.21.10.64
  9. Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea vol.7, pp.12, 2014, https://doi.org/10.1016/j.heliyon.2021.e08525