DOI QR코드

DOI QR Code

Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells

수용성 공액고분자/그래핀 옥사이드 복합체를 이용한 유기태양전지의 정공수송층에 대한 연구

  • Kim, Kyu-Ri (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Oh, Seung-Hwan (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Hyun Bin (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Jeun, Joon-Pyo (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Phil-Huyn (Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
  • 김규리 (한국원자력연구원 첨단방사선연구소) ;
  • 오승환 (한국원자력연구원 첨단방사선연구소) ;
  • 김현빈 (한국원자력연구원 첨단방사선연구소) ;
  • 전준표 (한국원자력연구원 첨단방사선연구소) ;
  • 강필현 (한국원자력연구원 첨단방사선연구소)
  • Received : 2013.07.24
  • Accepted : 2013.11.08
  • Published : 2014.01.25

Abstract

The poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F)] and graphene oxide (GO) was blended and irradiated with gamma ray under ambient condition. This WPF-6-oxy-F-GO composite was investigated as a hole-transporting layer (HTL) in organic solar cells (OSCs). Compared with the pristine GO, the sheet resistance ($R_{sheet}$) of irradiated WPF-6-oxy-F-GO was decreased about 2 orders of magnitude. The reason for the decrease of $R_{sheet}$ is the effect of efficient ${\pi}-{\pi}$ packing resulted from the formation of C-N bond between WPF6-oxy-F and GO. As a result, the efficiency of OSCs was dramatically enhanced ~ 6.10% by introducing irradiated WPF-6-oxy-F-GO as a HTL. WPF-6-oxy-F-GO is a sufficient candidate for HTL to facilitate the low-cost and high efficiency OSCs.

Poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide(WPF-6-oxy-F)]와 graphene oxide(GO)를 혼합하여 WPF-6-oxy-F-GO를 제조한 후 공기 중에서 감마선을 조사하였다. WPF-6-oxy-F-GO 복합재는 유기태양전지(organic solar cells, OSCs)의 정공수송층(hole transporting layer, HTL)으로서 적용하였다. GO와 비교해 보았을 때, 조사된 WPF-6-oxy-F-GO의 면저항(sheet resistance, $R_{sheet}$)은 약 2배 정도 감소하였다. 이는 감마선 조사를 통하여 WPF-6-oxy-F와 GO 사이의 C-N 결합의 형성으로 인한 ${\pi}-{\pi}$ 공유 결합의 영향과 효율적인 packing 때문이다. 결과적으로, 조사된 WPF-6-oxy-F-GO를 정공수송층으로 적용하였을 때 유기태양전지의 효율은 6.10%까지 증가하였다. 수용성 고분자 WPF-6-oxy-F-GO는 정공수송층으로서 사용되고 있는 PEDOT:PSS를 대체하는 대안 소재로서, 높은 효율과 저가의 유기태양전지를 구현할 수 있을 것으로 기대된다.

Keywords

References

  1. J. S. Huang, C. Y. Chou, and C. F. Lin, Sol. Energy Mater. Sol. Cells, 94, 182 (2010). https://doi.org/10.1016/j.solmat.2009.08.019
  2. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev., 107, 1233 (2007). https://doi.org/10.1021/cr050156n
  3. C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang, and C. S. Hsu, J. Am. Chem. Soc., 132, 4887 (2010). https://doi.org/10.1021/ja100236b
  4. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12, 481 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  5. Y. Kim, A. M. Ballantyne, J. Nelson, and D. D. C. Bradley, Org. Electron., 10, 205 (2009). https://doi.org/10.1016/j.orgel.2008.10.003
  6. V. Shrotriya, G. Li, Y. Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 88, 073508 (2006). https://doi.org/10.1063/1.2174093
  7. H.-H. Liao, L.-M. Chen, Z. Xu, G.. Li, and Y. Yang, Appl. Phys. Lett., 92, 173303 (2008). https://doi.org/10.1063/1.2918983
  8. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett., 93, 221107 (2008). https://doi.org/10.1063/1.3039076
  9. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett., 97, 043311 (2009).
  10. K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, and G. A. Grimes, J. Non-Cryst. Solids, 354, 2767 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.09.070
  11. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006). https://doi.org/10.1063/1.2359579
  12. M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 92, 686 (2008). https://doi.org/10.1016/j.solmat.2008.01.005
  13. Q. Zheng, G. Fang, F. Cheng, H. Lei, P. Quin, and C. Zhan, J. Phys. D : Appl. Phys., 46, 135101 (2013). https://doi.org/10.1088/0022-3727/46/13/135101
  14. Y. Gao, H.-L. Yip, K.-S. Chen, K. M. O’Malley, O. Acton, Y. Sun, G. Ting, H. Chen, and A. K.-Y. Jen, Adv. Mater., 23, 1903 (2011). https://doi.org/10.1002/adma.201100065
  15. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochem. Commun., 10, 1555 (2008). https://doi.org/10.1016/j.elecom.2008.08.007
  16. M. A. Ali, E. Saion, N. Yahya, A. Kassim, K. M. Dahlan, and S. Hashim, JESTEC, 2, 111 (2007).
  17. H. Koizumi, H. Dougauchi, T. Yamano, and T. Ichikawa, Jpn. J. Appl. Phys., 42, 7122 (2003). https://doi.org/10.1143/JJAP.42.7122
  18. S.-H. Oh, S.-I, Na, J. Jo, B. Lim, D. Vak, and D.-Y. Kim, Adv. Mater., 20, 1977 (2010).
  19. R. Steim, F. R. Kogler, and C. J. Brabec, J. Mater. Chem., 20, 2499 (2010). https://doi.org/10.1039/b921624c
  20. J.-S. Yeo, J.-M. Yun, D.-Y. Kim, S. Park, S.-S. Kim, M.-H. Yoon, T.-W. Kim, and S.-I. Na, ACS Appl. Mater. Interfacs, 4, 2551 (2010).
  21. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, Adv. Mater., 20, 2376 (2008). https://doi.org/10.1002/adma.200703050
  22. H. Cheun, C. Fuentes-Hernandez, Y. Zhou, W. J. P-otscavage, S.-J. Kim, J. Shim, A. Dindar, and B. Kip-pelen, J. Phys. Chem. C, 114, 20713 (2010). https://doi.org/10.1021/jp106641j
  23. S. T. Jung, S.-H. Oh, H. B. Kim, J.-P. Jeun, B.-J. Lee, and P.-H. Kang, J. Nanosci. Nanotechnol., 13, 7358 (2013). https://doi.org/10.1166/jnn.2013.7854
  24. S.-I Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H Oh, B.-K. Yu, T. Lee, and D.-Y. Kim, J. Mater. Chem., 19, 9045 (2009). https://doi.org/10.1039/b915756e