DOI QR코드

DOI QR Code

석조문화재 보수물질로의 적용을 위한 무기질 바인더 안정성 연구

A Study on Stability of Inorganic Binder for Application as Conservation Material for Stone Monuments

  • 김대식 (경주대학교 문화재보존학과) ;
  • 도진영 (경주대학교 문화재보존학과) ;
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Kim, Dae Sik (Department Conservation science of cultural properties, Gyeongju University) ;
  • Do, Jin Young (Department Conservation science of cultural properties, Gyeongju University) ;
  • Cho, Hyen Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2014.11.21
  • 심사 : 2014.12.17
  • 발행 : 2014.12.30

초록

석조문화재 보수물질로서의 적용을 위해 무기질 바인더를 시험하였다. 순수 무기질 바인더와 첨가제를 배합한 3종을 시편으로 제작하였고 거창화강석에 무기질 바인더 시편들을 부착시켜 무기질 바인더가 암석에 미치는 영향을 분석하였다. 무기질 바인더와 반응시킬 pH 4.0과 pH 5.6 수용액을 국내 강우의 산성도와 함유이온을 토대로 제조하였다. pH 8.0 약알칼리수와 pH 6.85 탈이온수를 준비하여 산성수의 대조군으로 적용하였다. 물반응 후 무기질 바인더 시편의 무게 감소는 시편의 종류에 따라서는 컸지만 물의 산성도와 상관성은 적었다. 순수 무기질 시편의 압축강도가 가장 컸으나 물반응 후 감소율이 가장 크다. 큰 흡수율은($6.72-12.44kg/m^2{\cdot}t^{1/2}$) 무기질 바인더로부터 용출된 이온 함량과 상관성이 크다. 모든 액성의 수용액이 무기질 바인더와 반응 후 pH 9.0-10.0로 변화하였으며, 수용액에서는 무기질 바인더에서 용해된 $Mg^{2+}$$K^+$이 다량 검출되었다. 용해된 이온들은 수용액 내 음이온들과 결합하여 높은 용해도를 지닌 $MgSO_4{\cdot}nH_2O$$KNO_3$와 같은 백색염을 형성하였다. 암석강화제와 발수제를 처리한 무기질 바인더 시편에서는 이온량이 급격하게 감소하였다.

Inorganic binders were studied in order to apply a conservation material for stone monument. A pure inorganic binder and 3 species of inorganic binder which contain additives on the basis of a pure inorganic binder were selected as test samples. Through the application of inorganic binders on Geochang granite investigate their influences on stone. pH 4.0 and 5.6 acid solution, respectively were manufactured on the basis of the acidity of domestic rainfall. Alkaline water with pH 8.0 and deionized water with pH 6.85 were prepared as control group. Changes in weights of inorganic binders were not definite according to the acidity of water while weight losses in inorganic binder type were greater after reaction with the water. The compressive strengths of pure inorganic binder was largest before the test but its decrease rate were larger after reaction with the water. Water absorption rate of inorganic binders are 6.72 to $12.44kg/m^2{\cdot}t^{1/2}$ after reaction with the water. Such high absorption was considered that it forced water to move deep into inorganic binder and made the components of inorganic binder dissolve. Acidities of the water of pH 4.0, 5.6, 6.85 and 8.0, respectively were changed to pH 9.0-10.0 after reaction with the inorganic binders. Ion concentrations in the water changed after reaction with the inorganic binders and $Mg^{2+}$, and $K^+$ significantly increased, dissolved from the binder. The high concentration of ions detected showed that the binder reacted with water and formed white salts with high solubility such as $MgSO_4{\cdot}nH_2O$, $KNO_3$. Ion concentrations significantly decreased from the binder after treatment with consolidant and water repellent.

키워드

참고문헌

  1. Backbier, L. and Rousseau, J. (1993) Analytical study of salt migration and efflorescence in a mediaeval cathedral. Analytica Chimica Acta, 283, 855-867. https://doi.org/10.1016/0003-2670(93)85299-Y
  2. Do, J.Y. (2005) Deterioration of granite in Bunhwangsaseoktap (Stone pagoda of Bunhwangsa Temple). Journal of conservation science, 17, 68-77 (in Korean with English abstract).
  3. Do, J.Y. and Cho, H.G. (2010) Modeling study on deterioration of stone monuments constructed with silicate rock by acid rain. Journal of the Mineralogical Society of Korea, 23, 63-71 (in Korean with English abstract).
  4. Do, J.Y. and Lim, G.W. (2008) Influence of the soluble salt on the exfoliation of the stone monument. Journal of conservation science, 22, 119-132 (in Korean with English abstract).
  5. Hwang, Y.B. and Kim, M.H. (1990) A Study on the factors of efflorescence on the brick masonry walls. Journal of the architectural institute of Korea Structure & Construction, 10, 635-640 (in Korean with English abstract).
  6. Hwang H.J., Lee, J.K., and Yang, J.H. (2008) An experimental study for basic properties of hwangto binder. Journal of the architectural institute of Korea Structure & Construction, 24, 79-86 (in Korean with English abstract).
  7. Kim, S.B., Park, S.G., Song, H.W., Byun, G.J., and Kim, J.Y. (2005) Permeability coefficient properties of mortar using natural inorganic minerals. Concrete journal, 17, 1976-0485 (in Korean with English abstract).
  8. Lee, S.J., Kim, J.H., and Do, J.Y. (2007) A study on the application of SILRES BS OH 100 consolidants for shale, Journal of conservation science, 21, 33-40 (in Korean with English abstract).
  9. Siedel, H. (1994) Dolomitic limemotar as orgin of stone harmful salt in the Tulpen kanzel Dom in Freiberg/Sachsen. Steinzerfall-Steinkonservierung, Ernst & Sohn, 173-180 (in German).
  10. Winkler E.M. (1994) Stone in architecture, 3ed., Springer-Verlag, Germany, pp. 166.
  11. Winkler E.M. and Wilhelm E.J, (1970) Saltburst by hydration pressures in architectural stone in urban atmospH ere. Geological Society of America Bulletin, 81, 567-572. https://doi.org/10.1130/0016-7606(1970)81[567:SBBHPI]2.0.CO;2

피인용 문헌

  1. 석조문화재 보존처리용 무기질바인더의 성능개선을 위한 조성물 연구 vol.36, pp.5, 2020, https://doi.org/10.12654/jcs.2020.36.5.05