DOI QR코드

DOI QR Code

Lauryl Sulfobetaine과 혼합계면활성제에 의한 4-클로로벤조산의 가용화에 대한 연구

Study on the Solubilization of 4-Chlorobenzoic Acid by Lauryl Sulfobetaine and Mixed Surfactant Systems

  • 이남민 (한국기술교육대학교 응용화학공학과) ;
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Lee, Nam-Min (Department of Applied Chemical Engineering, Korea University of Tech. & Education) ;
  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Tech. & Education)
  • 투고 : 2014.10.27
  • 심사 : 2014.12.15
  • 발행 : 2014.12.30

초록

본 연구에서는 양쪽성 계면활성제인 lauryl sulfobetaine(LSB)과 혼합계면활성제를 이용하여 광범위한 온도변화에서 4-클로로벤조산의 가용화현상을 알아보고자 한다. 이런 가용화현상에 미치는 온도효과와 계면활성제분자에서 알킬기의 길이에 대한 효과를 조사하였다. 가용화상수값($K_s$)은 UV/Vis 법에서 용액의 전체 흡광도를 측정하여 계면활성제의 농도에 대해 도시하여 그 기울기로부터 구하였다. 모든 계면활성제용액에서 4-클로로벤조산의 가용화에 대한 ${\Delta}G^o_s$값은 측정범위 내에서 모두 음의 값을 나타내었으며, 온도가 증가할수록 감소하였다. 그리고 ${\Delta}H^o_s$값과 ${\Delta}S^o_s$값은 모두 양의 값을 나타내었으며, 온도가 증가할수록 증가하였다. 즉, 계면활성제의 종류와 온도의 변화에 따라 $K_s$ 값과 열역학적 함수값이 큰 폭으로 변하였으며, 그런 결과로부터 4-클로로벤조산이 미셀의 어느 부분에 가용화되는지를 예측할 수 있었다.

In this study, we investigated the solubilization 4-chlorobenzoic acid in a wide range of temperature using a zwitterionic surfactant of lauryl sulfobetaine(LSB) and mixed surfactant systems. The effects of temperature and alkyl-group's length of surfactant molecule on the solubilization of 4-chlorobenzoic acid have been measured. The solubilization constants ($K_s$) were taken by the UV/Vis spectrophotometric method, plotting the total absorbance of the solution versus the surfactant concentration. The results show that the values of ${\Delta}G^o_s$ are all negative within the measured temperature range and decrease by increasing temperature, And also the measured values of ${\Delta}H^o_s$ and ${\Delta}S^o_s$ are all positive and increase by increasing temperature. The values of $K_s$ and thermodynamic parameters are simultaneously dependent on the temperature and the kinds of surfactant molecules. From the results we can postulate the solubilization site of 4-chlorobenzoic acid within the micelle.

키워드

참고문헌

  1. B. H. Lee, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, Effects of an Anionic Polyelectrolyte on the Solubilization of Mono and Dichlorophenols by Aqueous Solutions of n-Hexadecylpyridinium Chloride, Langmuir 7, 1332 (1991). https://doi.org/10.1021/la00055a007
  2. A. Patist, S. S. Bhagwat, K. W. Penfild, P. Aikens, and D. O. Shah , on the Measurement of Critical Micelle Concentrations of Pure and Technical-grade Nonionic Surfactants, J. Surfact. Deterg., 3, 53 (2000). https://doi.org/10.1007/s11743-000-0113-4
  3. S. K. Mehta, S. Chaudhary, R. Kumar, and K. K. Bhasin, Facile Solubilization of Organochalcogen Compounds in Mixed Micelle Formation of Binary and Ternary Cationic-Nonionic Surfactant Mixtures. J. Phys. Chem., B, 113, 7188 (2009). https://doi.org/10.1021/jp811310f
  4. A. Makayssi, R. Bury, and C. Treiner, Thermodynamics of Micellar Solubilization for 1-Pentanol in Weakly Interacting Binary Cationic Surfactant Mixtures of 25$^{circle}C$, Langmuir 10, 1359 (1994). https://doi.org/10.1021/la00017a009
  5. J. Weiss, and D. J. Mcclements, Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles, Langmuir 16, 5879 (2000). https://doi.org/10.1021/la9914763
  6. I. Toshihiko, O. Masatake, E. Kunio, and M. Kenjiro, Interactions Between Betaine-Type Zwitterionic and Anionic Surfactants in Mixed Micelles, Langmuir 7, 30 (1991). https://doi.org/10.1021/la00049a008
  7. Y. Eda, N. Takisawa, and K. Shirahama, Solubilization of Isomeric Alkanols in Ionic Micelles, Langmuir 13, 2432 (1997). https://doi.org/10.1021/la960856a
  8. M. Takeuchi and Y. Moroi, Solubilization of n-Alkylbenzenes into 1-Dodecanesulfonic Acid Micelles, Langmuir 11, 4719 (1995). https://doi.org/10.1021/la00012a023
  9. K. Singh, D. G. Marangoni, Synergistic Interactions in the Mixed Micelles of Cationic Gemini with Zwitterionic Surfactants: The pH and Spacer Effect, J. Colloids Interface Sci., 315, 620 (2007). https://doi.org/10.1016/j.jcis.2007.06.062
  10. N. Nishikido, Thermodynamic Equations Expressing the Synergistic Solubilization Effect by Surfactant Mixtures. Further information, Langmuir 8, 1718 (1992). https://doi.org/10.1021/la00043a006
  11. T. Chakraborty, I. Chakraborty, S. P. Moulik, and S. Ghosh, Physicochemical and Conformational Studies on BSA-Surfactant Interaction in Aqueous Medium, Langmuir 25, 3062 (2009). https://doi.org/10.1021/la803797x
  12. H. Hoffmann, S. Hoffmann, J. C. Illner, Phase Behavior and Properties of Micellar Solutions of Mixed Zwitterionic and Ionic Surfactants, J. Colloid & Polym Science 97, 103 (1994). https://doi.org/10.1007/BFb0115145
  13. B. H. Lee and N. M. Lee, Study on the Solubilization of 4-Chlorobenzoic Acid by Aqueous Solutions of Various Cationic, Nonionic, and Mixed Surfactant Systems, J. of Kor. Oil Chem. Soc., 31, 244 (2014). https://doi.org/10.12925/jkocs.2014.31.2.244
  14. B. H. Lee and N. M. Lee, Solubilization of Para-Halogenated Benzoic Acid Isomers by the Solution of Tetradecyltrimethylammonium Bromide, Appl. Chem. Eng., 22, 473 (2011).
  15. B. H. Lee and N. M. Lee, Solubilization of 4-Alkylbenzoic Acid Isomers by the Aqueous Solution of Tetradecyltrimethylammonium Bromide, J. Kor. Chem. Soc., 56, 1 (2012).
  16. M. Khimani, R. Ganguly, V. K. Aseal and P. Bahadur, Solubilization of Parabens in Aqueous Pluronic Solutions: Investigating the Micellar Growth and Interaction as, a Function of Paraben Composition, J. Phys. Chem., B, 116, 14943 (2012). https://doi.org/10.1021/jp308738s
  17. Cheng-jie Cheng, Guang-miao Qu, Ji-jun Wei, Tao Yu, Wei Ding, Thermodynamics of Micellization of Sulfobetaine Surfactants in Aqueous Solution, J. Surfact Deterg., 15, 757 (2012). https://doi.org/10.1007/s11743-012-1374-8
  18. C. C. Ruiz, Thermodynamics of Micellization of Tetradecyltrimethylammonium Bromide in Ethylene Glycol-Water Binary Mixtures, J. Colloids Polym Sci., 277, 701 (1999). https://doi.org/10.1007/s003960050443
  19. B. H. Lee, Relationship Between the Micellization of TTAB and the Solubilization of p-Bromophenol in TTAB Solution, J. Kor. Chem. Soc., 57, 665 (2013) https://doi.org/10.5012/jkcs.2013.57.6.665
  20. B. H. Lee and N. M. Lee, Thermodynamics on the Micellization of Pure Cationic (DTAB, TTAB, CTAB), Nonionic(Tween-20, Tween-40, Tween-80), and Their Mixed Surfactant Systems, J. of Kor. Oil Chem. Soc., 30, 679 (2013). https://doi.org/10.12925/jkocs.2013.30.4.679
  21. T. S. Banipal, A. K. Sood, and K. Singh, Micellization Behavior of the 14-2-14 Gemini Surfactant with Some Conventional Surfactants at Different Temperatures, J. Surfact Deterg., 14, 235 (2011). https://doi.org/10.1007/s11743-010-1217-4
  22. B. H. Lee, Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution, Appl. Chem. Eng., 25, 20 (2014). https://doi.org/10.14478/ace.2013.1084
  23. Fang Li, G. Z. Li, J. B. Chen, Synergism in Mixed Zwitterionic-Anionic Surfactant Solutions and the Aggregation Numbers of the Mixed Micelles, J. Colloids and Surface A 145, 167 (1998). https://doi.org/10.1016/S0927-7757(98)00543-3

피인용 문헌

  1. Effects of Surfactant Molecules’ Head- and Tail-groups on the Solubilization of p-Chlorobenzoic Acid vol.59, pp.5, 2015, https://doi.org/10.5012/jkcs.2015.59.5.379
  2. 양이온성 계면활성제 (DTAB, TTAB 및 CTAB)에 의한 아닐린의 가용화에 대한 열역학적 고찰 vol.36, pp.4, 2014, https://doi.org/10.12925/jkocs.2019.36.4.1143
  3. 양이온계면활성제에 의한 4-알킬아닐린 유도체의 가용화에서 알킬치환기, 계면활성제 및 온도의 효과 vol.37, pp.2, 2020, https://doi.org/10.12925/jkocs.2020.37.2.250