• Title/Summary/Keyword: prototype model

Search Result 1,551, Processing Time 0.039 seconds

A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement. (콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구)

  • 배주성;고영주;김재경;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

Effect of countermeasures on the galloping instability of a long-span suspension footbridge

  • Ma, Ruwei;Zhou, Qiang;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.499-509
    • /
    • 2020
  • The aeroelastic stability of a long-span suspension footbridge with a bluff deck (prototype section) was examined through static and dynamic wind tunnel tests using a 1:10 scale sectional model of the main girder, and the corresponding aerodynamic countermeasures were proposed in order to improve the stability. First, dynamic tests of the prototype sectional model in vertical and torsional motions were carried out at three attack angles (α = 3°, 0°, -3°). The results show that the galloping instability of the sectional model occurs at α = 3° and 0°, an observation that has never been made before. Then, the various aerodynamic countermeasures were examined through the dynamic model tests. It was found that the openings set on the vertical web of the prototype section (web-opening section) mitigate the galloping completely for all three attack angles. Finally, static tests of both the prototype and web-opening sectional models were performed to obtain the aerodynamic coefficients, which were further used to investigate the galloping mechanism by applying the Den Hartog criterion. The total damping of the prototype and web-opening models were obtained with consideration of the structural and aerodynamic damping. The total damping of the prototype model was negative for α = 0° to 7°, with the minimum value being -1.07%, suggesting the occurrence of galloping, while that of the web-opening model was positive for all investigated attack angles of α = -12° to 12°.

Similitude Study of Performance of Lugged Wheel on Soft Soils (연약지(軟弱地)에서 상사성(相似性) 원리(原理)를 이용(利用)한 차륜(車輪)의 성능분석(性能分析)에 관한 연구(硏究))

  • Lee, K.S.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.220-229
    • /
    • 1993
  • A dimensional analysis was carried out to investigate if model agricultural radial tire can predict the tractive performance of prototype tires. Experimental data was analyzed to prove the results of dimensional analysis. The results was summerized as follows ; 1. When the model and prototype tires are tested under the same soil conditions, inflation pressure, slip and dynamic load, traction coefficient ratio between two tires depend on the geometry of two tires. 2. According to the regression analysis of the experimental data, traction equation parameters of the prototype tires can be predicted from the that of model tire 3. Predicted traction coefficient of prototype tire, calculated from the traction equation paramters, showed good correlation with that of experimental results. Thus it was possible to predict net and gross traction of prototype tire from the model traction equation parameters.

  • PDF

Design and Implementation of an OPAC Prototype based on FRBR Model (FRBR 기반의 OPAC 프로토타입 개발에 관한 연구)

  • Lee, Eun-Ju
    • Journal of Korean Library and Information Science Society
    • /
    • v.49 no.2
    • /
    • pp.221-244
    • /
    • 2018
  • This study intends to implement an OPAC prototype based on FRBR(Functional Requirements for Bibliographic Records) model, which are reflected the users' information needs and search behavior. To the end, this study applies prototyping techniques that design, evaluate and improve an early sample model. Included in this study are as follows: (1) design a conceptual model of new OPACs based on the users' information needs about FRBR-based search services, (2) implement a FRBR-based prototype with WordPress 4.2 version, (3) evaluate the FRBR-based prototype from the viewpoint of users and experts(catalogers and professors). 50 college students and 6 experts participate in the final evaluation process.

Surface Roughness Impact on Francis Turbine Performances and Prediction of Efficiency Step Up

  • Maruzewski, Pierre;Hasmatuchi, Vlad;Mombelli, Henri-Pascal;Burggraeve, Danny;Iosfin, Jacob;Finnegan, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • In the process of turbine modernizations, the investigation of the influences of water passage roughness on radial flow machine performance is crucial and validates the efficiency step up between reduced scale model and prototype. This study presents the specific losses per component of a Francis turbine, which are estimated by CFD simulation. Simulations are performed for different water passage surface roughness heights, which represents the equivalent sand grain roughness height. As a result, the boundary layer logarithmic velocity profile still exists for rough walls, but moves closer to the wall. Consequently, the wall friction depends not only on roughness height but also on its shape and distribution. The specific losses are determined by CFD numerical simulations for each component of the prototype, taking into account its own specific sand grain roughness height. The model efficiency step up between reduced scale model and prototype value is finally computed by the assessment of specific losses on prototype and by evaluating specific losses for a reduced scale model with smooth walls. Furthermore, surveys of rough walls of each component were performed during the geometry recovery on the prototype and comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements. This study underlines that if rough walls are considered, the CFD approach estimates well the local friction loss coefficient. It is clear that by considering sand grain roughness heights in CFD simulations, its forms a significant part of the global performance estimation. The availability of the efficiency field measurements provides an unique opportunity to assess the CFD method in view of a systematic approach for turbine modernization step up evaluation. Moreover, this paper states that CFD is a very promising tool for future evaluation of turbine performance transposition from the scale model to the prototype.

Development of a Prototype S-100 Data Model (프로토타입 해사데이터 모델 개발)

  • Kang, Namseon;Son, Gumjun;Jeong, Yujun;Kim, Hyejin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.527-536
    • /
    • 2018
  • In this paper, we developed a prototype model accident management SMART-Navigation project. In order to develop a prototype model, we analyzed the status of maritime data exchange standard and procedure. We developed accident management prototype application schema, feature catalog and portrayal catalog in accordance with S-100 standard data model development procedure by collecting requirements related services and referring to related standards. In order to verify accident management prototype model, we test data set based on Gwang-yang Port. The prototype model and test data verified verification software, and it was confirmed that the designated symbol was displayed at the correct position through the S-100 simple viewer.

Numerical and experimental study on the scale effect of internal solitary wave loads on spar platforms

  • Wang, Xu;Zhou, Ji-Fu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.569-577
    • /
    • 2020
  • Based on laboratory experiments and numerical simulations, the scale effect of Internal Solitary Wave (ISW) loads on spar platforms is investigated. First, the waveforms, loads, and torques on the spar model at a laboratory obtained by the experiments and simulations agree well with each other. Then, a prototype spar platform is simulated numerically to elucidate the scale effect. The scale effect for the horizontal forces is significant owing to the viscosity effect, whereas it is insignificant and can be neglected for the vertical forces. From the similarity point of view, the Froude number was the same for the scaled model and its prototype, while the Reynolds number increased significantly. The results show that the Morison equation with the same set of drag and inertia coefficients is not applicable to estimate the ISW loads for both the prototype and laboratory scale model. The coefficients should be modified to account for the scale effect. In conclusion, the dimensionless vertical forces on experimental models can be applied to the prototype, but the dimensionless horizontal forces of the experimental model are larger than those of the prototype, which will lead to overestimation of the horizontal force of the prototype if direct conversion is implemented.

The Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement (시멘트콘크리트 포장체의 거동연구를 위한 축소모델 배합의 재료적 상사성)

  • Ko, Young-Zoo;Lee, Yeoung-Woo;Bae, Ju-Seong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.139-145
    • /
    • 1999
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate material similitude between the prototype and the model concrete. Based on the results of experiments, we compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-stain curves of prototype concrete, it is important that various mix proportions of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

Design of the Radial Extrusion Process for the General-Purpose Flange Using Model Material (모델재료를 이용한 범용 플랜지의 레이디얼 압출 공정설계)

  • Lee, Sang-Don;Byon, Sung-Kwang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • This study is to compare and analyze the material flow, deformation characteristics, and forming load of flange by means of similitude experimental method of model material using plasticine. In order to find optimal forming conditions, prototype experiments were designed to investigate forming characteristics of general-purpose flange under various working conditions. As a result of prototype experiments, billet thickness and gap-height ratio was found to be the most influential experimental parameter in flange forming. Forming loads from prototype experiments were compared to the results of finite element analysis after conducting estimation of forming loads of real material. Results of prototype experiments based on model material techniques are expected to be used as a basic data of die design f3r the development of products and process.