DOI QR코드

DOI QR Code

Bayesian Inference with Inequality Constraints

부등 제한 조건하에서의 베이지안 추론

  • Oh, Man-Suk (Department of Statistics, Ewha Womans University)
  • Received : 2014.10.21
  • Accepted : 2014.11.10
  • Published : 2014.12.31

Abstract

This paper reviews Bayesian inference with inequality constraints. It focuses on ⅰ) comparison of models with various inequality/equality constraints on parameters, ⅱ) multiple tests on equalities of parameters when parameters are under inequality constraints, ⅲ) multiple test on equalities of score parameters in models for contingency tables with ordinal categorical variables.

부등제한 조건 (>,<,=)과 관련된 베이지안 추론에서 다음의 세 가지 주제에 대하여 기존의 연구와 최근의 연구동향 그리고 추후 연구주제에 대하여 살펴보았다 : ⅰ) 모수에 대한 여러 부등제한 조건들의 비교, ⅱ) 모수에 부등제한 조건을 부여하는 것이 타당하다고 할 때 모수의 동등성에 관한 동시 다중 검정, ⅲ) 순서적 범주형 변수에 대한 분할표에서 스코어 모수에 순서적 부등제한 조건을 가정 할 때 스코어 모수의 동등성에 대한 다중 검정.

Keywords

References

  1. Akaike, H. (1987). Factor analysis and AIC, Psychometrika, 52, 317-332. https://doi.org/10.1007/BF02294359
  2. Agresti, A., Chuang, C. and Kezouh, A. (1987). Order-restricted score parameters in association models for contingency tables, Journal of the American Statistical Association, 82, 619-623. https://doi.org/10.1080/01621459.1987.10478474
  3. Agresti, A. and Coull, B. A. (2002). The analysis of contingency tables under inequality constraints, Journal of Statistical Planning and Inference, 107, 45-73. https://doi.org/10.1016/S0378-3758(02)00243-4
  4. Albert. J. and Chib, S. (1991). Bayesian Analysis of binary and polychotomous response Data, Journal of the American Statistical Association, 88, 669-679
  5. Anraku, K. (1999). An information criterion for parameters under a simple order restriction, Biometrika, 86, 141-152 https://doi.org/10.1093/biomet/86.1.141
  6. Bacchetti, P. (1989). Addictive isotonic models, Journal of the American Statistical Association, 84, 289-294.
  7. Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions, New York, NY: Wiley.
  8. Dickey, J. (1971). The weighted likelihood ration, linear hypotheses on normal location parameters, The Annals of Statistics, 42, 204-223. https://doi.org/10.1214/aoms/1177693507
  9. Dickey, J. (1976). Approximate posterior distributions, Journal of the American Statistical Association, 71, 680-689. https://doi.org/10.1080/01621459.1976.10481547
  10. Dickey, J. and Lientz, B. P. (1970). The weighted likelihood ration, sharp hypotheses about chances, the order of a Markov Chain, Annals of Mathematical Statistics, 41, 214-226. https://doi.org/10.1214/aoms/1177697203
  11. Dunson, D. B. and Neelon, B. (2003). Bayesian inference on order-constrained parameters in generalized linear models, Biometrics, 59, 286-295. https://doi.org/10.1111/1541-0420.00035
  12. Dykstra, R. L., Robertson, T. and Silvapulle, M. J. (2002). Statistical inference under inequality constraints, Special issue, Journal of Statistical Planning and Inference, 107, 1-2. https://doi.org/10.1016/S0378-3758(02)00241-0
  13. Galindo-Garre, F. G.and Vermunt, J. K. (2004). The order restricted association model : Two estimation algorithms and issues in testing, Psychometrika, 68, 614-654.
  14. Galindo-Garre, F. G. and Vermunt, J. K. (2005). Testing log-linear models with inequality constraints: A comparison of asymptotic, bootstrap and posterior predictive p-values, Statistical Netherlandica, 59, 82-94. https://doi.org/10.1111/j.1467-9574.2005.00281.x
  15. Goodman, L. A., (1979). Simple models for the analysis of association in cross-classifications having ordered categories, Journal of the American Statistical Association, 74, 537-552. https://doi.org/10.1080/01621459.1979.10481650
  16. Hayter, A. J. (1990). A one-sided studentized range test for testing against a simple ordered alternative, Journal of the American Statistical Association, 85, 778-785.
  17. Hoijtink, H. (2013). Objective Bayes factors for inequality constrained hypotheses, International Statistical Review, 81, 207-229 https://doi.org/10.1111/insr.12010
  18. Hoijtink, H., Klugkist, I. and Boelen, P. A. (2008). Bayesian Evaluation of Informative Hypotheses, Springer, New York.
  19. Iliopoulos, G., Kateri, M. and Ntzoufras, I. (2007). Bayesian estimation of unrestricted and order-restricted association models for two-way contingency table, Computational Statistics and Data Analysis, 51, 4643-4655. https://doi.org/10.1016/j.csda.2006.08.013
  20. Iliopoulos, G., Kateri, M. and Ntzoufras, I. (2009). Bayesian model comparison for the order-restricted RC association model, Psychometrika, 74, 561-587. https://doi.org/10.1007/s11336-009-9117-0
  21. Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics, John & Wiley, New York.
  22. Klugkist, I., Kata, B. and Hoijtink, H. (2005). Bayesian model selection using encompassing priors, Statistica Neerlandica, 59, 57-59. https://doi.org/10.1111/j.1467-9574.2005.00279.x
  23. Klugkist, I., Laudy, O. and Hoijtink, H. (2005). Inequality constrained analysis of variance: A Bayesian approach, Psychological Methods, 10, 477-493. https://doi.org/10.1037/1082-989X.10.4.477
  24. Klugkist, I. and Hoijtink, H. (2007). The Bayes factor for inequality and about equality constrained models, Computational Statistics and Data Analysis, 51, 6367-6379. https://doi.org/10.1016/j.csda.2007.01.024
  25. Kuiper, R. M., Hoijtink, H.J.A. and Silvapulle, M. J. (2011). An Akaike-type information criterion for model selection under inequality constraints, Biometrika, 98, 495-501. https://doi.org/10.1093/biomet/asr002
  26. Kuiper, R. M., Hoijtink, H. J. A. and Silvapulle, M. J., (2012). Generalization of the order-restricted information criterion for multivariate normal linear models, Journal of Statistical Planning and Inference, 142, 2454-2463. https://doi.org/10.1016/j.jspi.2012.03.007
  27. Laudy, O. and Hoijtink, H. (2007). Bayesian methods for the analysis of inequality and equality constrained contingency tables, Statistical Methods in Medical Research, 16, 123-138. https://doi.org/10.1177/0962280206071925
  28. Lindley, D. V. (1957). A statistical paradox, Biometrika, 44, 187-192. https://doi.org/10.1093/biomet/44.1-2.187
  29. Liu, L., Lee, C. C. and Peng, J. (2002). Max-min multiple comparison procedure for isotonic does-response curves, Journal of Statistical Planning and Inference, 107, 133-141. https://doi.org/10.1016/S0378-3758(02)00248-3
  30. Liu, L. (2001). Simultaneous statistical inference for monotone dose-response means, Doctoral dissertation, Memorial University of Newfoundland, St, John's, Canada.
  31. Marden, J. H. and Allen, L. R. (2002). Molecules, muscles, and machines: Universal performance characteristics of motors, The National Academy of Sciences USA, 99, 4161-4166. https://doi.org/10.1073/pnas.022052899
  32. Marden, J. I. and Gao. Y. H.(2002). Rank-based procedures for structural hypotheses of the covariance matrix, Sankhya, 64, 653-677
  33. Marcus, R. and Peritz, E. (1976). Some simultaneous confidence bounds in normal models with restricted alternatives, Journal of the Royal Statistical Society, 38, 157-165.
  34. Marcus, R. (1982). Some results on simultaneous confidence intervals for monotone contrasts in one-way ANOVA model, Communications in Statistics A, 11, 615-622. https://doi.org/10.1080/03610928208828256
  35. Maxwell, I. E. (1961). Maxwell, E. A. Recent trends in factor analysis, Journal of the Royal Statistical Society, 124, 49-59. https://doi.org/10.2307/2343153
  36. Moreno, E. (2005). Objective Bayesian methods for one-sided testing, Journal of the American Statistical Association, 14, 181-198.
  37. Monton-Jones, T., Diggle, P., Parker, L., Dickinson, H. O. and Binks, K. (2000). Addictive isotonic regression models in epidemiology, Statistics in Medicine, 19, 849-859. https://doi.org/10.1002/(SICI)1097-0258(20000330)19:6<849::AID-SIM410>3.0.CO;2-D
  38. Mulder, J. (2014a). Prior adjusted default Bayes factors for testing (in) equality constrained hypotheses, Computational Statistics and Data Analysis, 71, 448-463. https://doi.org/10.1016/j.csda.2013.07.017
  39. Mulder, J. (2014b). Bayes factors for testing inequality constrained hypotheses: Issues with prior specification, British Journal of Mathematical and Statistical Psychology, 67, 153-171. https://doi.org/10.1111/bmsp.12013
  40. Mulder, J., Hoijtink, H. and Klugkist, I. (2010). Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors, Journal of Statistical Planning and Inference, 140, 887-906. https://doi.org/10.1016/j.jspi.2009.09.022
  41. Nashimoto, K. and Wright, F. T. (2005). A note on multiple comparison procedures for detecting difference in simply ordered means, Statistics and Probability Letters, 73, 393-401. https://doi.org/10.1016/j.spl.2005.04.014
  42. Oh, M. S. (1999). Estimation of posterior density functions from a posterior sample, Computational Statistics and Data Analysis, 29, 411-427. https://doi.org/10.1016/S0167-9473(98)00068-1
  43. Oh, M. S. and Shin, D. W. (2011). A unified Bayesian inference on treatment means with order constraints, Computational Statistics and Data Analysis, 55, 924-934. https://doi.org/10.1016/j.csda.2010.07.026
  44. Oh, M. S. (2013). Bayesian multiple comparison of models for binary data with inequality constraints, Statistics and Computing, 23, 481-490. https://doi.org/10.1007/s11222-012-9324-x
  45. Oh, M. S. (2014a). Bayesian test one quality of score parameters in the order restricted RC association model, Computational Statistics and Data Analysis, 72, 147-157. https://doi.org/10.1016/j.csda.2013.11.009
  46. Oh, M. S. (2014b). Bayesian comparison of model swith inequality and equality constraints, Statistics and Probability Letters, 84, 176-182. https://doi.org/10.1016/j.spl.2013.10.005
  47. Ritov, Y. and Gilula, Z. (1993). The order restricted RC model for ordered contingency tables: estimation and testing for fit, Annals of Statistics, 19, 2090-2101.
  48. Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference, John Wiley and Sons, New York.
  49. Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
  50. Shang, J., Cavanaugh, J. E. and Wright, F. T. (2008). A Bayesian multiple comparison procedure for orderrestricted mixed models, International Statistical Review, 76, 268-284. https://doi.org/10.1111/j.1751-5823.2008.00051.x
  51. Shayamall, D. P. and Dunson, D. B. (2005). Estimation of order-restricted means from correlated data, Biometrika, 92, 703-715. https://doi.org/10.1093/biomet/92.3.703
  52. Silvapulle, M. J. and Sen, P. K. (2004). Constrained Statistical Inference, Wiley, New York.
  53. Tarantola, C., Consonni, G. and Dellaportas, P. (2008). Bayesian clustering of row effects models, Journal of Statistical Planning and Inference, 138, 2223-2235. https://doi.org/10.1016/j.jspi.2007.09.012
  54. Taylor, J. M. G., Wang, L. and Li, Z. (2007). Analysis on binary responses with ordered covariates and missing data, Statistics in Medicine, 26, 3443-3458. https://doi.org/10.1002/sim.2815
  55. Van Wesel, F., Hoijtink, H. and Klugkist, I. (2011). Choosing priors for constrained analysis of variance: Methods based on training data, Scandinavian Journal of Statistics, 38, 666-690. https://doi.org/10.1111/j.1467-9469.2010.00719.x
  56. Verdinelli, I. and Wasserman, L. (1995). Computing Bayes factors using a generalization of the Savage-Dickey density ratio, Journal of the American Statistical Association, 90, 613-618.
  57. Wetzels, R., Vandekerckhove, J., Tuerlinckx, F. and Wagenmakers, E. (2010). Bayesian parameter estimation in the expectancy valence model of the Iowa gambling task, Journal of Mathematical Psychology, 54, 14-27. https://doi.org/10.1016/j.jmp.2008.12.001
  58. Williams, D. A. (1977). Some inference procedures for monotonically ordered normal means, Biometrika, 64, 9-14. https://doi.org/10.1093/biomet/64.1.9