DOI QR코드

DOI QR Code

비선형모형에 적용한 제약조건 최적실험의 예제들

Some Examples of Constrained Optimal Experimental Design for Nonlinear Models

  • Kim, Youngil (School of Business and Economics, Chung-Ang University) ;
  • Jang, Dae-Heung (Department of Statistics, Pukyong National University) ;
  • Yi, Seongbaek (Department of Statistics, Pukyong National University)
  • 투고 : 2014.10.11
  • 심사 : 2014.11.28
  • 발행 : 2014.12.31

초록

비선형모형에 대한 최적실험은 주어지는 모수의 초기값에 의존하는 특징이 있음에도 불구하고 비선형모형에 대한 최적실험은 비선형모형이 주류인 생물이나 화학공학 통계분야에서는 끊임없이 연구되어 왔다. 본 연구에서는 실험자가 다수의 실험목적을 가지고 있는 환경에서 상충되는 목적간의 균형을 맞추는 관점에서 비선형 모형에 대한 최적실험 기준을 제약 실험으로 살펴보았다. 문헌에서 존재하는 기존의 방법 뿐 아니라 새로운 융합기준도 적용하였는데 시나리오 별로 그 적용 형태를 몇 가지 비선형 모형을 통하여 알아보았다.

Despite the fact that the optimal design for nonlinear model depends on the unknown quantity of parameter to estimate basically, its popularity is growing in bio and engineering statistics area since all those models in the area are virtually nonlinear. In this paper we have dealt with the case when the researcher has multiple objectives in experimentation, decision among the competing models, protection against the departure from the assumed model, and the con icting interests among design criteria. To tackle these issues we attempted several new approaches which are taking advantage of the easiness of constrained optimal design. Several nonlinear models were tested.

키워드

참고문헌

  1. Atkinson, A. C. and Donev, A. N. (1992). Optimal Experimental Designs, Oxford Press, Oxford.
  2. Berger, M. P. F. and Wong, W. K. (2009). An Introduction to Optimal Designs for Social and Biomedical Research, Wiley, New York.
  3. Dette, H., Kiss, C., Bevanda, M. and Bretz, F. (2010). Optimal designs for the emax, log-linear and exponential models, Biometrika, 97, 513-518. https://doi.org/10.1093/biomet/asq020
  4. Fedorov, V. V. and Leonov, A. N. (2013). Optimal Design for Nonlinear Response Models, Chapman & Hall/CRC, reprint in kindle edition.
  5. Fresen, J. (1984). Aspects of bioavailability studies, M.Sci. Thesis, Department of mathematical Statistics, University of Capetown.
  6. Hill, W. J. and Hunter, W. G. (1974). Design of experiments for subsets of parameters, Technometrics, 16, 425-434. https://doi.org/10.1080/00401706.1974.10489212
  7. Imhof, L. and Wong, W. K. (2000). A graphical method for nding maximin designs, Biometrics, 56, 113-117. https://doi.org/10.1111/j.0006-341X.2000.00113.x
  8. Kiefer, J. (1961). Optimum designs in regression problem II, Annals of mathematical Statistics, 32, 298-325. https://doi.org/10.1214/aoms/1177705160
  9. Kim, Y. I. and Lim, Y. B. (2007). Hybrid approach when multiple objectives exist, The Korean Communi-cations in Statistics, 14, 531-540. https://doi.org/10.5351/CKSS.2007.14.3.531
  10. Kim, Y. I. and Jang, D. H. (2014). Some criteria for optimal experimental design at multiple extrapolation points, The Korean Journal of Applied Statistics, 27, 693-703. https://doi.org/10.5351/KJAS.2014.27.5.693
  11. Kitos, C. P. (2001). Design aspects for the Michaelis-Menten model, Biometrical Letters, 38, 53-66.
  12. Laauter, E. (1974). Experimental planning in a class of models, Mathematishe Operationsforshung und Statistik, 5, 673-708.
  13. Lopez-Fidalgo, J., Thommasi, C., and Tranda r, P. C. (2008). Optimal designs for discriminating between some extensions of the Michaelis-Menten model, Journal of Statistical Planning and Inference, 138, 3797-3804. https://doi.org/10.1016/j.jspi.2008.01.014
  14. O'Brien, T. (2005). Designing for parameter subsets in gaussian nonlinear regression models, Journal of Data Science, 3, 179-197.
  15. Raaijmakers, J. G. W. (1997). Statistical analysis of the Michaelis-Menten equation, Biometrics, 43, 780-793.
  16. Silvey, S. D. (1980). Optimum Design : An Introduction to the Theory for Parameter Estimation, Chapman and Hall, London.
  17. Stigler, S. M. (1971). Optimal experimental design for polynomial regression, Journal of the American Statistical Association, 66, 311-318. https://doi.org/10.1080/01621459.1971.10482260