DOI QR코드

DOI QR Code

Silicene on Other Two-dimensional Materials: Formation of Heterostructure

  • Kim, Jung Hwa (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) and Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS)) ;
  • Lee, Zonghoon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) and Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS))
  • 투고 : 2014.12.24
  • 심사 : 2014.12.26
  • 발행 : 2014.12.30

초록

Silicene is one of the most interesting two-dimensional materials, because of not only the extraordinary properties similar to graphene, but also easy compatibility with existing silicon-based devices. However, non-existing graphitic-like structure on silicon and unstable free-standing silicene structure leads to difficulty in commercialization of this material. Therefore, substrates are essential for silicene, which affects various properties of silicene and supporting unstable structure. For maintaining outstanding properties of silicene, van der Waals bonding between silicene and substrate is essential because strong interaction, such as silicene with metal, breaks the band structure of silicene. Therefore, we review the stability of silicene on other two-dimensional materials for van der Waals bonding. In addition, the properties of silicene are reviewed for silicene-based heterostructure.

키워드

참고문헌

  1. Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, and Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102. https://doi.org/10.1063/1.3419932
  2. Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, and Lau C N (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907. https://doi.org/10.1021/nl0731872
  3. Borensztein Y, Prevot G, and Masson L (2014) Large differences in the optical properties of a single layer of Si on Ag(110) compared to silicene. Phys. Rev. B 89, 245410. https://doi.org/10.1103/PhysRevB.89.245410
  4. Cahangirov S, Ozcelik V O, Xian L D, Avila J, Cho S, Asensio M C, Ciraci S, and Rubio A (2014) Atomic structure of the root 3 $\times$ root 3 phase of silicene on Ag(111). Phys. Rev. B 90, 035448. https://doi.org/10.1103/PhysRevB.90.035448
  5. Cahangirov S, Topsakal M, Akturk E, Sahin H, and Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804. https://doi.org/10.1103/PhysRevLett.102.236804
  6. Chang H R, Zhou J H, Zhang H, and Yao Y G (2014) Probing the topological phase transition via density oscillations in silicene and germanene. Phys. Rev. B 89, 201411. https://doi.org/10.1103/PhysRevB.89.201411
  7. Chavez-Castillo M R, Rodriguez-Meza M A, and Meza-Montes L (2012) 2D radial distribution function of silicene. Rev. Mex. Fis. 58, 139-143.
  8. Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, and Meng S (2013) Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys. Rev. Lett 110, 085504. https://doi.org/10.1103/PhysRevLett.110.085504
  9. Chen M X and Weinert M (2014) Revealing the substrate origin of the linear dispersion of silicene/Ag(111). Nano Lett. 14, 5189-5193. https://doi.org/10.1021/nl502107v
  10. Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, and Molle A (2014) Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 26, 2096-2101. https://doi.org/10.1002/adma.201304783
  11. De Padova P, Quaresima C, Olivieri B, Perfetti P, and Le Lay G (2011) sp(2)-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl. Phys. Lett. 98, 081909. https://doi.org/10.1063/1.3557073
  12. Ding Y and Ni J (2009) Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 95, 083115. https://doi.org/10.1063/1.3211968
  13. Drummond N D, Zolyomi V, and Fal'ko V I (2012) Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423. https://doi.org/10.1103/PhysRevB.85.075423
  14. Dzade N Y, Obodo K O, Adjokatse S K, Ashu A C, Amankwah E, Atiso C D, Bello A A, Igumbor E, Nzabarinda S B, Obodo J T, Ogbuu A O, Femi O E, Udeigwe J O, and Waghmare U V (2010) Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet. J. Phys-Condens. Mat. 22, 375502. https://doi.org/10.1088/0953-8984/22/37/375502
  15. Ezawa M (2012a) Topological phase transition and electrically tunable diamagnetism in silicene. Eur. Phys. J. B 85, 363. https://doi.org/10.1140/epjb/e2012-30577-0
  16. Ezawa M (2012b) A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003. https://doi.org/10.1088/1367-2630/14/3/033003
  17. Ezawa M (2013) Hexagonally warped Dirac cones and topological phase transition in silicene superstructure. Eur. Phys. J. B 86, 139. https://doi.org/10.1140/epjb/e2013-31029-1
  18. Fuhrer M S, Lau C N, and MacDonald A H (2010) Graphene: materially better carbon. MRS Bull. 35, 289-295. https://doi.org/10.1557/mrs2010.551
  19. Gao J F and Zhao J J (2012) Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface. Sci. Rep-Uk. 2, 861. https://doi.org/10.1038/srep00861
  20. Gao N, Li J C, and Jiang Q (2014a) Bandgap opening in silicene: effect of substrates. Chem. Phys. Lett. 592, 222-226. https://doi.org/10.1016/j.cplett.2013.12.036
  21. Gao N, Li J C, and Jiang Q (2014b) Tunable band gaps in silicene-MoS2 heterobilayers. Phys. Chem. Chem. Phys. 16, 11673-11678. https://doi.org/10.1039/c4cp00089g
  22. Guo Z X and Oshiyama A (2014) Structural tristability and deep Dirac states in bilayer silicene on Ag(111) surfaces. Phys. Rev. B 89, 155418. https://doi.org/10.1103/PhysRevB.89.155418
  23. Houssa M, van den Broek B, Scalise E, Pourtois G, Afanasev V V, and Stesmans A (2013) An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 15, 3702-3705. https://doi.org/10.1039/c3cp50391g
  24. Johnson N W, Vogt P, Resta A, De Padova P, Perez I, Muir D, Kurmaev E Z, Le Lay G, and Moewes A (2014) The metallic nature of epitaxial silicene monolayers on Ag(111). Adv. Funct. Mater. 24, 5253-5259. https://doi.org/10.1002/adfm.201400769
  25. Jose D and Datta A (2011) Structures and electronic properties of silicene clusters: a promising material for FET and hydrogen storage. Phys. Chem. Chem. Phys. 13, 7304-7311. https://doi.org/10.1039/c0cp02580a
  26. Jose D and Datta A (2012) Understanding of the buckling distortions in silicene. J. Phys. Chem. C 116, 24639-24648. https://doi.org/10.1021/jp3084716
  27. Jose D and Datta A (2014) Structures and chemical properties of silicene:unlike graphene. Accounts Chem. Res. 47, 593-602. https://doi.org/10.1021/ar400180e
  28. Kaloni T P, Tahir M, and Schwingenschlogl U (2013a) Quasi free-standing silicene in a superlattice with hexagonal boron nitride. Sci. Rep-Uk. 3, 3192. https://doi.org/10.1038/srep03192
  29. Kaloni T P, Gangopadhyay S, Singh N, Jones B, and Schwingenschlogl U (2013b) Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 88, 235418. https://doi.org/10.1103/PhysRevB.88.235418
  30. Kaltsas D, Tsetseris L, and Dimoulas A (2014) Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures. Appl. Surf. Sci. 291, 93-97. https://doi.org/10.1016/j.apsusc.2013.09.115
  31. Kamal C, Chakrabarti A, and Banerjee A (2014) Ab initio investigation on hybrid graphite-like structure made up of silicene and boron nitride. Phys. Lett. A 378, 1162-1169. https://doi.org/10.1016/j.physleta.2014.02.011
  32. Kara A, Leandri C, Davila M, Padova P, Ealet B, Oughaddou H, Aufray B, and Lay G (2009) Physics of silicene stripes. J. Supercond. Nov. Magn. 22, 259-263. https://doi.org/10.1007/s10948-008-0427-8
  33. Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M, and Takagi N (2014) Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction. Surf. Sci. 623, 25-28. https://doi.org/10.1016/j.susc.2013.12.013
  34. Li G H, Tan J, Liu X D, Wang X P, Li F, and Zhao M W (2014b) Manifold electronic structure transition of hybrid silicane-silicene nanoribbons. Chem. Phys. Lett. 595, 20-24.
  35. Li L Y, Wang X P, Zhao X Y, and Zhao M W (2013a) Moire superstructures of silicene on hexagonal boron nitride: a first-principles study. Phys. Lett. A 377, 2628-2632. https://doi.org/10.1016/j.physleta.2013.07.037
  36. Li L Y and Zhao M W (2014) Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 118, 19129-19138. https://doi.org/10.1021/jp5043359
  37. Li S, Wu Y F, Liu W, and Zhao Y H (2014a) Control of band structure of van der Waals heterostructures: silicene on ultrathin silicon nanosheets. Chem. Phys. Lett. 609, 161-166. https://doi.org/10.1016/j.cplett.2014.06.047
  38. Li X D, Mullen J T, Jin Z H, Borysenko K M, Nardelli M B, and Kim K W (2013b) Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418. https://doi.org/10.1103/PhysRevB.87.115418
  39. Li X D, Wu S Q, Zhou S, and Zhu Z Z (2014c) Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res. Lett. 9, 110. https://doi.org/10.1186/1556-276X-9-110
  40. Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, and Takagi N (2013) Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110, 076801. https://doi.org/10.1103/PhysRevLett.110.076801
  41. Lin X Q and Ni J (2012) Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study. Phys. Rev. B 86, 075440. https://doi.org/10.1103/PhysRevB.86.075440
  42. Liu H S, Gao J F, and Zhao J J (2013) Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117, 10353-10359. https://doi.org/10.1021/jp311836m
  43. Liu J J and Zhang W Q (2013) Bilayer silicene with an electrically-tunable wide band gap. Rsc. Adv. 3, 21943-21948. https://doi.org/10.1039/c3ra44392b
  44. Liu Z L, Wang M X, Liu C H, Jia J F, Vogt P, Quaresima C, Ottaviani C, Olivieri B, De Padova P, and Le Lay G (2014a) The fate of the 2 root 3 $\times$ 2 root 3 R(30 degrees) silicene phase on Ag(111). Apl. Mater. 2, 092513. https://doi.org/10.1063/1.4894871
  45. Liu Z L, Wang M X, Xu J P, Ge J F, Le Lay G, Vogt P, Qian D, Gao C L, Liu C H, and Jia J F (2014b) Various atomic structures of monolayer silicene fabricated on Ag(111). New J. Phys. 16, 075006. https://doi.org/10.1088/1367-2630/16/7/075006
  46. Ma Y D, Dai Y, Guo M, Niu C W, and Huang B B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883-3887. https://doi.org/10.1039/c1nr10577a
  47. Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, and Carbone C (2014) Silicene on Ag(111): a honeycomb lattice without Dirac bands. Phys. Rev. B 89, 201416. https://doi.org/10.1103/PhysRevB.89.201416
  48. Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, and Gao H J (2013) Buckled silicene formation on Ir(111). Nano Lett. 13, 685-690. https://doi.org/10.1021/nl304347w
  49. Moras P, Mentes T O, Sheverdyaeva P M, Locatelli A, and Carbone C (2014) Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys-Condens. Mat. 26, 185001. https://doi.org/10.1088/0953-8984/26/18/185001
  50. Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, and Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett. 12, 113-118. https://doi.org/10.1021/nl203065e
  51. Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J, and Gao H J (2014) Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene. Small 10, 2215-2225. https://doi.org/10.1002/smll.201303698
  52. Pflugradt P, Matthes L, and Bechstedt F (2014a) Unexpected symmetry and AA stacking of bilayer silicene on Ag(111). Phys. Rev. B 89, 205428. https://doi.org/10.1103/PhysRevB.89.205428
  53. Pflugradt P, Matthes L, and Bechstedt F (2014b) Silicene on metal and metallized surfaces: ab initio studies. New J. Phys. 16, 075004. https://doi.org/10.1088/1367-2630/16/7/075004
  54. Qin R, Zhu W J, Zhang Y L, and Deng X L (2014) Uniaxial strain-induced mechanical and electronic property modulation of silicene. Nanoscale Res. Lett. 9, 521. https://doi.org/10.1186/1556-276X-9-521
  55. Quhe R G, Yuan Y K, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, Yu D P, Yang J B, and Lu J (2014) Does the Dirac cone exist in silicene on metal substrates? Sci. Rep-Uk. 4, 5476.
  56. Quhe R G, Zheng J X, Luo G F, Liu Q H, Qin R, Zhou J, Yu D P, Nagase S, Mei W N, Gao Z X, and Lu J (2012) Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. Npg. Asia Mater. 4, e6. https://doi.org/10.1038/am.2012.10
  57. Sahin H and Peeters F M (2013) Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 87, 085423. https://doi.org/10.1103/PhysRevB.87.085423
  58. Sahin H, Sivek J, Li S, Partoens B, and Peeters F M (2013) Stone-Wales defects in silicene: formation, stability, and reactivity of defect sites. Phys. Rev. B 88, 045434. https://doi.org/10.1103/PhysRevB.88.045434
  59. Scalise E, Cinquanta E, Houssa M, van den Broek B, Chiappe D, Grazianetti C, Pourtois G, Ealet B, Molle A, Fanciulli M, Afanas'ev V V, and Stesmans A (2014) Vibrational properties of epitaxial silicene layers on (111) Ag. Appl. Surf. Sci. 291, 113-117. https://doi.org/10.1016/j.apsusc.2013.08.113
  60. Shao Z G, Ye X S, Yang L, and Wang C L (2013) First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114, 093712. https://doi.org/10.1063/1.4820526
  61. Shirai T, Shirasawa T, Hirahara T, Fukui N, Takahashi T, and Gasegawa S (2014) Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface (vol 89, 241403, 2014). Phys. Rev. B 90, 039902.
  62. Sone J, Yamagami T, Aoki Y, Nakatsuji K, and Hirayama H (2014) Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys. 16, 095004. https://doi.org/10.1088/1367-2630/16/9/095004
  63. Song Y L, Zhang S, Lu D B, Xu H R, Wang Z, Zhang Y, and Lu Z W (2013) Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. Eur. Phys. J. B 86, 488. https://doi.org/10.1140/epjb/e2013-31078-4
  64. Tchalala M R, Enriquez H, Yildirim H, Kara A, Mayne A J, Dujardin G, Ali M A, and Oughaddou H (2014) Atomic and electronic structures of the (root 13 $\times$ root 13)R13.9 degrees of silicene sheet on Ag(111). Appl. Surf. Sci. 303, 61-66. https://doi.org/10.1016/j.apsusc.2014.02.064
  65. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, and Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501. https://doi.org/10.1103/PhysRevLett.108.155501
  66. Voon L C L Y and Guzman-Verri G G (2014) Is silicene the next graphene? MRS Bull. 39, 366-373. https://doi.org/10.1557/mrs.2014.60
  67. Yuan Y K, Quhe R G, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, and Lu J (2014) Strong band hybridization between silicene and Ag(111) substrate. Physica E 58, 38-42. https://doi.org/10.1016/j.physe.2013.11.016
  68. Zhou M, Li R S, Zhou J Y, Guo X S, Liu B, Zhang Z X, and Xie E Q (2009) Growth and characterization of aligned ultralong and diametercontrolled silicon nanotubes by hot wire chemical vapor deposition using electrospun poly(vinyl pyrrolidone) nanofiber template. J. Appl. Phys. 106, 124315. https://doi.org/10.1063/1.3273362

피인용 문헌

  1. Pseudo Jahn-Teller effect in oxepin, azepin, and their halogen substituted derivatives vol.91, pp.9, 2017, https://doi.org/10.1134/S0036024417090035
  2. Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics vol.10, pp.4, 2018, https://doi.org/10.1007/s40820-018-0221-5
  3. Instability of two–dimensional structure of dichalcogenin and dipnictogenin octa–heterocyclic systems with 1,2–C6X2(X = O, S, Se, Te, N, P) unsaturated rings pp.1572-9001, 2019, https://doi.org/10.1007/s11224-018-1200-7
  4. The symmetry breaking phenomenon in heteronine analogues due to the pseudo Jahn-Teller effect vol.25, pp.1, 2019, https://doi.org/10.1007/s00894-018-3900-8