References
- Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis: Forecasting and Control (3rd ed.), Prentice Hall, Englewood Cliffs, NJ.
- Chang, P. T. (1997), Fuzzy seasonality forecasting, Fuzzy Sets and Systems, 90(1), 1-10. https://doi.org/10.1016/S0165-0114(96)00138-8
- Chen, S. M. (1996), Forecasting enrollments based on fuzzy time series, Fuzzy Sets and Systems, 81(3), 311-319. https://doi.org/10.1016/0165-0114(95)00220-0
- Chen, S. M. (2002), Forecasting enrollments based on high-order fuzzy time series, Cybernetics and Systems, 33(1), 1-16. https://doi.org/10.1080/019697202753306479
- Chen, S. M. and Chung, N. Y. (2006), Forecasting enrollments using high-order fuzzy time series and genetic algorithms, International Journal of Intelligent Systems, 21(5), 485-501. https://doi.org/10.1002/int.20145
- Chen, S. M. and Hsu, C. C. (2004), A new method to forecast enrollments using fuzzy time series, International Journal of Applied Science and Engineering, 2(3), 234-244.
- Chen, S. M. and Hsu, C. C. (2008), A new approach for handling forecasting problems using high-order fuzzy time series, Intelligent Automation and Soft Computing, 14(1), 29-43. https://doi.org/10.1080/10798587.2008.10642980
- Chen, S. M. and Hwang, J. R. (2000), Temperature prediction using fuzzy time series, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 30(2), 263-275. https://doi.org/10.1109/3477.836375
- Hsu, Y. Y., Tse, S. M., and Wu, B. (2003), A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(6), 671-690. https://doi.org/10.1142/S0218488503002478
- Huarng, K. (2001a), Effective lengths of intervals to improve forecasting in fuzzy time series, Fuzzy Sets and Systems, 123(3), 387-394. https://doi.org/10.1016/S0165-0114(00)00057-9
- Huarng, K. (2001b), Heuristic models of fuzzy time series for forecasting, Fuzzy Sets and Systems, 123(3), 369-386. https://doi.org/10.1016/S0165-0114(00)00093-2
- Huarng, K. and Yu, H. K. (2004), A dynamic approach to adjusting lengths of intervals in fuzzy time series forecasting, Intelligent Data Analysis, 8(1), 3-27.
- Huarng, K. and Yu, T. H. K. (2006), Ratio-based lengths of intervals to improve fuzzy time series forecasting, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(2), 328-340.
- Hwang, J. R., Chen, S. M., and Lee, C. H. (1998), Handling forecasting problems using fuzzy time series, Fuzzy Sets and Systems, 100(1), 217-228. https://doi.org/10.1016/S0165-0114(97)00121-8
- Lee, H. S. and Chou, M. T. (2004), Fuzzy forecasting based on fuzzy time series, International Journal of Computer Mathematics, 81(7), 781-789. https://doi.org/10.1080/00207160410001712288
- Lee, L. W., Wang, L. H., Chen, S. M., and Leu, Y. H. (2006), Handling forecasting problems based on two-factors high-order fuzzy time series, IEEE Transactions on Fuzzy Systems, 14(3), 468-477. https://doi.org/10.1109/TFUZZ.2006.876367
- Nise, N. S. (2004), Control Systems Engineering (4th ed.), Wiley, Hoboken, NJ.
- Own, C. M. and Yu, P. T. (2005), Forecasting fuzzy time series on a heuristic high-order model, Cybernetics and Systems: An International Journal, 36(7), 705-717. https://doi.org/10.1080/01969720591008922
- Sah, M. and Degriarev, K. Y. (2005), Forecasting enrollment model based on first-order fuzzy time series, Proceedings of World Academy of Science, Engineering and Technology, 1, 375-378.
- Song, Q. (1999), Seasonal forecasting in fuzzy time series, Fuzzy Sets and Systems, 107(2), 235-236. https://doi.org/10.1016/S0165-0114(98)00266-8
- Song, Q. (2003), A note on fuzzy time series model selection with sample autocorrelation functions, Cybernetics and Systems, 34(2), 93-107. https://doi.org/10.1080/01969720302867
- Song, Q. and Chissom, B. S. (1993a), Fuzzy time series and its models, Fuzzy Sets and Systems, 54(3), 269-277. https://doi.org/10.1016/0165-0114(93)90372-O
- Song, Q. and Chissom, B. S. (1993b), Forecasting enrollments with fuzzy time series (Part I), Fuzzy Sets and Systems, 54(1), 1-9. https://doi.org/10.1016/0165-0114(93)90355-L
- Song, Q. and Chissom, B. S. (1994), Forecasting enrollments with fuzzy time series (part II), Fuzzy Sets and Systems, 62(1), 1-8. https://doi.org/10.1016/0165-0114(94)90067-1
- Song, Q. and Esogbue, A. O. (2008), A new algorithm for automated modeling of seasonal time series using Box-Jenkins techniques, Industrial Engineering and Management Systems, 7(1), 9-22.
- Song, Q. and Esogbue, A. O. (2006), A new algorithm for automated Box-Jenkins ARMA time series modeling using residual autocorrelation/partial autocorrelation functions, Industrial Engineering and Management Systems, 5(2), 116-125.
- Tsai, C. C. and Wu, S. J. (1999), A study for second-order modeling of fuzzy time series, Proceedings of the IEEE International Fuzzy Systems Conference, Seoul, Korea, 719-725.
- Tseng, F. M. and Tzeng, G. H. (2002), A fuzzy seasonal ARIMA model for forecasting, Fuzzy Sets and Systems, 126(3), 367-376. https://doi.org/10.1016/S0165-0114(01)00047-1
Cited by
- A big data framework for stock price forecasting using fuzzy time series pp.1573-7721, 2017, https://doi.org/10.1007/s11042-017-5144-5