DOI QR코드

DOI QR Code

Mitochondrial DNA Somatic Mutation in Cancer

  • Kim, Aekyong (School of Pharmacy, Catholic University of Daegu)
  • Received : 2014.11.19
  • Accepted : 2014.12.23
  • Published : 2014.12.31

Abstract

Cancer cells are known to drastically alter cellular energy metabolism. The Warburg effect has been known for over 80 years as pertaining cancer-specific aerobic glycolysis. As underlying molecular mechanisms are elucidated so that cancer cells alter the cellular energy metabolism for their advantage, the significance of the modulation of metabolic profiles is gaining attention. Now, metabolic reprogramming is becoming an emerging hallmark of cancer. Therapeutic agents that target cancer energy metabolism are under intensive investigation, but these investigations are mostly focused on the cytosolic glycolytic processes. Although mitochondrial oxidative phosphorylation is an integral part of cellular energy metabolism, until recently, it has been regarded as an auxiliary to cytosolic glycolytic processes in cancer energy metabolism. In this review, we will discuss the importance of mitochondrial respiration in the metabolic reprogramming of cancer, in addition to discussing the justification for using mitochondrial DNA somatic mutation as metabolic determinants for cancer sensitivity in glucose limitation.

Keywords

References

  1. Siegel, R., Ma, J., Zou, Z. and Jemal, A. (2014) Cancer statistics, 2014. Ca Cancer J. Clin., 64, 9-29. https://doi.org/10.3322/caac.21208
  2. Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  3. Cantor, J.R. and Sabatini, D.M. (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discovery, 2, 881-898. https://doi.org/10.1158/2159-8290.CD-12-0345
  4. Chen, X., Qian, Y. and Wu, S. (2014) The warburg effect: Evolving interpretations of an established concept. Free Radical Biol. Med., Epub ahead of print.
  5. Phan, L.M., Yeung, S.C. and Lee, M.H. (2014) Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med., 11, 1-19.
  6. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  7. Warburg, O.H. (1930) The Metabolism of Tumours: Investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlem. Arnold Constable, London, pp. 1-327.
  8. Koppenol, W.H., Bounds, P.L. and Dang, C.V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 11, 325-337. https://doi.org/10.1038/nrc3038
  9. Rask-Andersen, M., Zhang, J., Fabbro, D. and Schioth, H.B. (2014) Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol. Sci., 35, 604-620. https://doi.org/10.1016/j.tips.2014.09.007
  10. Nahta, R. and Esteva, F.J. (2007) Trastuzumab: triumphs and tribulations. Oncogene, 26, 3637-3643. https://doi.org/10.1038/sj.onc.1210379
  11. Ramos, P. and Bentires-Alj, M. (2014) Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene, Epub ahead of print.
  12. Garber, K. (2006) Energy deregulation: licensing tumors to grow. Science, 312, 1158-1159. https://doi.org/10.1126/science.312.5777.1158
  13. Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 1029-1033. https://doi.org/10.1126/science.1160809
  14. Granchi, C., Fancelli, D. and Minutolo, F. (2014) An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg. Med. Chem. Lett., 24, 4915-4925. https://doi.org/10.1016/j.bmcl.2014.09.041
  15. Pathania, D., Millard, M. and Neamati, N. (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Delivery Rev., 61, 1250-1275. https://doi.org/10.1016/j.addr.2009.05.010
  16. Bellance, N., Lestienne, P. and Rossignol, R. (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front. Biosci. (Landmark Ed.), 14, 4015-4034.
  17. Seyfried, T.N., Flores, R.E., Poff, A.M. and D'Agostino, D.P. (2014) Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis, 35, 515-527. https://doi.org/10.1093/carcin/bgt480
  18. Coller, H.A. (2014) Is cancer a metabolic disease? Am. J. Pathol., 184, 4-17. https://doi.org/10.1016/j.ajpath.2013.07.035
  19. Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R. and Morris, A.D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ, 330, 1304-1305. https://doi.org/10.1136/bmj.38415.708634.F7
  20. Pernicova, I. and Korbonits, M. (2014) Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol., 10, 143-156. https://doi.org/10.1038/nrendo.2013.256
  21. Menendez, J.A., Quirantes-Pine, R., Rodriguez-Gallego, E., Cufi, S., Corominas-Faja, B., Cuyas, E., Bosch-Barrera, J., Martin-Castillo, B., Segura-Carretero, A. and Joven, J. (2014) Oncobiguanides: Paracelsus' law and nonconventional routes for administering diabetobiguanides for cancer treatment. Oncotarget, 5, 2344-2348.
  22. Bridges, H.R., Jones, A.J., Pollak, M.N. and Hirst, J. (2014) Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J., 462, 475-487. https://doi.org/10.1042/BJ20140620
  23. Pessayre, D., Fromenty, B., Berson, A., Robin, M.A., Letteron, P., Moreau, R. and Mansouri, A. (2012) Central role of mitochondria in drug-induced liver injury. Drug Metab. Rev., 44, 34-87. https://doi.org/10.3109/03602532.2011.604086
  24. Szczepanek, K., Chen, Q., Larner, A.C. and Lesnefsky, E.J. (2012) Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion, 12, 180-189. https://doi.org/10.1016/j.mito.2011.08.011
  25. Vaupel, P., Hockel, M. and Mayer, A. (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signaling, 9, 1221-1235. https://doi.org/10.1089/ars.2007.1628
  26. Hirayama, A., Kami, K., Sugimoto, M., Sugawara, M., Toki, N., Onozuka, H., Kinoshita, T., Saito, N., Ochiai, A., Tomita, M., Esumi, H. and Soga, T. (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res., 69, 4918-4925. https://doi.org/10.1158/0008-5472.CAN-08-4806
  27. Birsoy, K., Possemato, R., Lorbeer, F.K., Bayraktar, E.C., Thiru, P., Yucel, B., Wang, T., Chen, W.W., Clish, C.B. and Sabatini, D.M. (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 508, 108-112. https://doi.org/10.1038/nature13110
  28. McKenzie, M., Liolitsa, D. and Hanna, M.G. (2004) Mitochondrial disease: mutations and mechanisms. Neurochem. Res., 29, 589-600. https://doi.org/10.1023/B:NERE.0000014829.42364.dd
  29. Salminen, A., Ojala, J., Kaarniranta, K. and Kauppinen, A. (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and agerelated diseases. Cell. Mol. Life Sci., 69, 2999-3013. https://doi.org/10.1007/s00018-012-0962-0
  30. Bonora, E., Porcelli, A.M., Gasparre, G., Biondi, A., Ghelli, A., Carelli, V., Baracca, A., Tallini, G., Martinuzzi, A., Lenaz, G., Rugolo, M. and Romeo, G. (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res., 66, 6087-6096. https://doi.org/10.1158/0008-5472.CAN-06-0171
  31. Szablewski, L. (2013) Expression of glucose transporters in cancers. Biochim. Biophys. Acta, 1835, 164-169.
  32. Zhang, X., Fryknas, M., Hernlund, E., Fayad, W., De Milito, A., Olofsson, M.H., Gogvadze, V., Dang, L., Pahlman, S., Schughart, L.A., Rickardson, L., D'Arcy, P., Gullbo, J., Nygren, P., Larsson, R. and Linder, S. (2014) Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat. Commun., 5, 3295.
  33. Viale, A., Pettazzoni, P., Lyssiotis, C.A., Ying, H., Sanchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., Kost-Alimova, M., Muller, F., Colla, S., Nezi, L., Genovese, G., Deem, A.K., Kapoor, A., Yao, W., Brunetto, E., Kang, Y., Yuan, M., Asara, J.M., Wang, Y.A., Heffernan, T.P., Kimmelman, A.C., Wang, H., Fleming, J.B., Cantley, L.C., DePinho, R.A. and Draetta, G.F. (2014) Oncogene ablationresistant pancreatic cancer cells depend on mitochondrial function. Nature, 514, 628-632. https://doi.org/10.1038/nature13611
  34. Le, A., Stine, Z.E., Nguyen, C., Afzal, J., Sun, P., Hamaker, M., Siegel, N.M., Gouw, A.M., Kang, B.H., Yu, S.H., Cochran, R.L., Sailor, K.A., Song, H. and Dang, C.V. (2014) Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxiacell cycle dual reporter. Proc. Natl. Acad. Sci. U.S.A., 111, 12486-12491. https://doi.org/10.1073/pnas.1402012111
  35. Osada-Oka, M., Hashiba, Y., Akiba, S., Imaoka, S. and Sato, T. (2010) Glucose is necessary for stabilization of hypoxiainducible factor-1alpha under hypoxia: contribution of the pentose phosphate pathway to this stabilization. FEBS Lett., 584, 3073-3079. https://doi.org/10.1016/j.febslet.2010.05.046
  36. Semenza, G.L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 3, 721-732. https://doi.org/10.1038/nrc1187
  37. Gasparre, G., Porcelli, A.M., Lenaz, G. and Romeo, G. (2013) Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harbor Perspect. Biol., 5, a011411.
  38. Pike Winer, L.S. and Wu, M. (2014) Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate. PLoS One, 9, e109916. https://doi.org/10.1371/journal.pone.0109916
  39. Habano, W., Sugai, T., Yoshida, T. and Nakamura, S. (1999) Mitochondrial gene mutation, but not large-scale deletion, is a feature of colorectal carcinomas with mitochondrial microsatellite instability. Int. J. Cancer, 83, 625-629. https://doi.org/10.1002/(SICI)1097-0215(19991126)83:5<625::AID-IJC10>3.0.CO;2-N
  40. Jeronimo, C., Nomoto, S., Caballero, O.L., Usadel, H., Henrique, R., Varzim, G., Oliveira, J., Lopes, C., Fliss, M.S. and Sidransky, D. (2001) Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene, 20, 5195-5198. https://doi.org/10.1038/sj.onc.1204646
  41. Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J. and Sobrinho-Simoes, M. (2002) Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol., 160, 1857-1865. https://doi.org/10.1016/S0002-9440(10)61132-7
  42. Costa-Guda, J., Tokura, T., Roth, S.I. and Arnold, A. (2007) Mitochondrial DNA mutations in oxyphilic and chief cell parathyroid adenomas. BMC Endocr. Disord., 7, 8. https://doi.org/10.1186/1472-6823-7-8
  43. Gasparre, G., Porcelli, A.M., Bonora, E., Pennisi, L.F., Toller, M., Iommarini, L., Ghelli, A., Moretti, M., Betts, C.M., Martinelli, G.N., Ceroni, A.R., Curcio, F., Carelli, V., Rugolo, M., Tallini, G. and Romeo, G. (2007) Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl. Acad. Sci. U.S.A., 104, 9001-9006. https://doi.org/10.1073/pnas.0703056104
  44. Gasparre, G., Hervouet, E., de Laplanche, E., Demont, J., Pennisi, L.F., Colombel, M., Mege-Lechevallier, F., Scoazec, J.Y., Bonora, E., Smeets, R., Smeitink, J., Lazar, V., Lespinasse, J., Giraud, S., Godinot, C., Romeo, G. and Simonnet, H. (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum. Mol. Genet., 17, 986-995. https://doi.org/10.1093/hmg/ddm371
  45. Dasgupta, S., Koch, R., Westra, W.H., Califano, J.A., Ha, P.K., Sidransky, D. and Koch, W.M. (2010) Mitochondrial DNA mutation in normal margins and tumors of recurrent head and neck squamous cell carcinoma patients. Cancer Prev. Res. (Philadelphia), 3, 1205-1211. https://doi.org/10.1158/1940-6207.CAPR-10-0018
  46. Porcelli, A.M., Ghelli, A., Ceccarelli, C., Lang, M., Cenacchi, G., Capristo, M., Pennisi, L.F., Morra, I., Ciccarelli, E., Melcarne, A., Bartoletti-Stella, A., Salfi, N., Tallini, G., Martinuzzi, A., Carelli, V., Attimonelli, M., Rugolo, M., Romeo, G. and Gasparre, G. (2010) The genetic and metabolic signature of oncocytic transformation implicates HIF1alpha destabilization. Hum. Mol. Genet., 19, 1019-1032. https://doi.org/10.1093/hmg/ddp566
  47. Ye, F., Samuels, D.C., Clark, T. and Guo, Y. (2014) Highthroughput sequencing in mitochondrial DNA research. Mitochondrion, 17, 157-163. https://doi.org/10.1016/j.mito.2014.05.004
  48. Singh, A.K., Pandey, P., Tewari, M., Pandey, H.P. and Shukla, H.S. (2014) Human mitochondrial genome flaws and risk of cancer. Mitochondrial DNA, 25, 329-334. https://doi.org/10.3109/19401736.2013.796520
  49. Damas, J., Samuels, D.C., Carneiro, J., Amorim, A. and Pereira, F. (2014) Mitochondrial DNA rearrangements in health and disease--a comprehensive study. Hum. Mutat., 35, 1-14. https://doi.org/10.1002/humu.22452
  50. Ju, Y.S., Alexandrov, L.B., Gerstung, M., Martincorena, I., Nik-Zainal, S., Ramakrishna, M., Davies, H.R., Papaemmanuil, E., Gundem, G., Shlien, A., Bolli, N., Behjati, S., Tarpey, P.S., Nangalia, J., Massie, C.E., Butler, A.P., Teague, J.W., Vassiliou, G.S., Green, A.R., Du, M.Q., Unnikrishnan, A., Pimanda, J.E., Teh, B.T., Munshi, N., Greaves, M., Vyas, P., El-Naggar, A.K., Santarius, T., Collins, V.P., Grundy, R., Taylor, J.A., Hayes, D.N., Malkin, D., Foster, C.S., Warren, A.Y., Whitaker, H.C., Brewer, D., Eeles, R., Cooper, C., Neal, D., Visakorpi, T., Isaacs, W.B., Bova, G.S., Flanagan, A.M., Futreal, P.A., Lynch, A.G., Chinnery, P.F., McDermott, U., Stratton, M.R. and Campbell, P.J. (2014) Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife, 3, e02935.
  51. Jones, J.B., Song, J.J., Hempen, P.M., Parmigiani, G., Hruban, R.H. and Kern, S.E. (2001) Detection of mitochondrial DNA mutations in pancreatic cancer offers a "mass"-ive advantage over detection of nuclear DNA mutations. Cancer Res., 61, 1299-1304.
  52. Lai, C.H., Huang, S.F., Liao, C.T., Chen, I.H., Wang, H.M. and Hsieh, L.L. (2013) Clinical significance in oral cavity squamous cell carcinoma of pathogenic somatic mitochondrial mutations. PLoS One, 8, e65578. https://doi.org/10.1371/journal.pone.0065578

Cited by

  1. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities vol.7, pp.2234-943X, 2017, https://doi.org/10.3389/fonc.2017.00262