Browse > Article
http://dx.doi.org/10.5487/TR.2014.30.4.235

Mitochondrial DNA Somatic Mutation in Cancer  

Kim, Aekyong (School of Pharmacy, Catholic University of Daegu)
Publication Information
Toxicological Research / v.30, no.4, 2014 , pp. 235-242 More about this Journal
Abstract
Cancer cells are known to drastically alter cellular energy metabolism. The Warburg effect has been known for over 80 years as pertaining cancer-specific aerobic glycolysis. As underlying molecular mechanisms are elucidated so that cancer cells alter the cellular energy metabolism for their advantage, the significance of the modulation of metabolic profiles is gaining attention. Now, metabolic reprogramming is becoming an emerging hallmark of cancer. Therapeutic agents that target cancer energy metabolism are under intensive investigation, but these investigations are mostly focused on the cytosolic glycolytic processes. Although mitochondrial oxidative phosphorylation is an integral part of cellular energy metabolism, until recently, it has been regarded as an auxiliary to cytosolic glycolytic processes in cancer energy metabolism. In this review, we will discuss the importance of mitochondrial respiration in the metabolic reprogramming of cancer, in addition to discussing the justification for using mitochondrial DNA somatic mutation as metabolic determinants for cancer sensitivity in glucose limitation.
Keywords
Mitochondrial DNA; Somatic mutation; Cancer; Aerobic glycolysis; Warburg effect; Oxidative phosphorylation; Oncobiguanide; Efficacy; Toxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dasgupta, S., Koch, R., Westra, W.H., Califano, J.A., Ha, P.K., Sidransky, D. and Koch, W.M. (2010) Mitochondrial DNA mutation in normal margins and tumors of recurrent head and neck squamous cell carcinoma patients. Cancer Prev. Res. (Philadelphia), 3, 1205-1211.   DOI   ScienceOn
2 Costa-Guda, J., Tokura, T., Roth, S.I. and Arnold, A. (2007) Mitochondrial DNA mutations in oxyphilic and chief cell parathyroid adenomas. BMC Endocr. Disord., 7, 8.   DOI   ScienceOn
3 Gasparre, G., Porcelli, A.M., Bonora, E., Pennisi, L.F., Toller, M., Iommarini, L., Ghelli, A., Moretti, M., Betts, C.M., Martinelli, G.N., Ceroni, A.R., Curcio, F., Carelli, V., Rugolo, M., Tallini, G. and Romeo, G. (2007) Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl. Acad. Sci. U.S.A., 104, 9001-9006.   DOI   ScienceOn
4 Gasparre, G., Hervouet, E., de Laplanche, E., Demont, J., Pennisi, L.F., Colombel, M., Mege-Lechevallier, F., Scoazec, J.Y., Bonora, E., Smeets, R., Smeitink, J., Lazar, V., Lespinasse, J., Giraud, S., Godinot, C., Romeo, G. and Simonnet, H. (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum. Mol. Genet., 17, 986-995.   DOI
5 Ye, F., Samuels, D.C., Clark, T. and Guo, Y. (2014) Highthroughput sequencing in mitochondrial DNA research. Mitochondrion, 17, 157-163.   DOI   ScienceOn
6 Viale, A., Pettazzoni, P., Lyssiotis, C.A., Ying, H., Sanchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., Kost-Alimova, M., Muller, F., Colla, S., Nezi, L., Genovese, G., Deem, A.K., Kapoor, A., Yao, W., Brunetto, E., Kang, Y., Yuan, M., Asara, J.M., Wang, Y.A., Heffernan, T.P., Kimmelman, A.C., Wang, H., Fleming, J.B., Cantley, L.C., DePinho, R.A. and Draetta, G.F. (2014) Oncogene ablationresistant pancreatic cancer cells depend on mitochondrial function. Nature, 514, 628-632.   DOI   ScienceOn
7 Le, A., Stine, Z.E., Nguyen, C., Afzal, J., Sun, P., Hamaker, M., Siegel, N.M., Gouw, A.M., Kang, B.H., Yu, S.H., Cochran, R.L., Sailor, K.A., Song, H. and Dang, C.V. (2014) Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxiacell cycle dual reporter. Proc. Natl. Acad. Sci. U.S.A., 111, 12486-12491.   DOI   ScienceOn
8 Osada-Oka, M., Hashiba, Y., Akiba, S., Imaoka, S. and Sato, T. (2010) Glucose is necessary for stabilization of hypoxiainducible factor-1alpha under hypoxia: contribution of the pentose phosphate pathway to this stabilization. FEBS Lett., 584, 3073-3079.   DOI   ScienceOn
9 Semenza, G.L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 3, 721-732.   DOI   ScienceOn
10 Gasparre, G., Porcelli, A.M., Lenaz, G. and Romeo, G. (2013) Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harbor Perspect. Biol., 5, a011411.
11 Habano, W., Sugai, T., Yoshida, T. and Nakamura, S. (1999) Mitochondrial gene mutation, but not large-scale deletion, is a feature of colorectal carcinomas with mitochondrial microsatellite instability. Int. J. Cancer, 83, 625-629.   DOI
12 Szablewski, L. (2013) Expression of glucose transporters in cancers. Biochim. Biophys. Acta, 1835, 164-169.
13 Jeronimo, C., Nomoto, S., Caballero, O.L., Usadel, H., Henrique, R., Varzim, G., Oliveira, J., Lopes, C., Fliss, M.S. and Sidransky, D. (2001) Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene, 20, 5195-5198.   DOI   ScienceOn
14 Hirayama, A., Kami, K., Sugimoto, M., Sugawara, M., Toki, N., Onozuka, H., Kinoshita, T., Saito, N., Ochiai, A., Tomita, M., Esumi, H. and Soga, T. (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res., 69, 4918-4925.   DOI   ScienceOn
15 Birsoy, K., Possemato, R., Lorbeer, F.K., Bayraktar, E.C., Thiru, P., Yucel, B., Wang, T., Chen, W.W., Clish, C.B. and Sabatini, D.M. (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 508, 108-112.   DOI   ScienceOn
16 McKenzie, M., Liolitsa, D. and Hanna, M.G. (2004) Mitochondrial disease: mutations and mechanisms. Neurochem. Res., 29, 589-600.   DOI   ScienceOn
17 Salminen, A., Ojala, J., Kaarniranta, K. and Kauppinen, A. (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and agerelated diseases. Cell. Mol. Life Sci., 69, 2999-3013.   DOI   ScienceOn
18 Bonora, E., Porcelli, A.M., Gasparre, G., Biondi, A., Ghelli, A., Carelli, V., Baracca, A., Tallini, G., Martinuzzi, A., Lenaz, G., Rugolo, M. and Romeo, G. (2006) Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res., 66, 6087-6096.   DOI   ScienceOn
19 Bellance, N., Lestienne, P. and Rossignol, R. (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front. Biosci. (Landmark Ed.), 14, 4015-4034.
20 Zhang, X., Fryknas, M., Hernlund, E., Fayad, W., De Milito, A., Olofsson, M.H., Gogvadze, V., Dang, L., Pahlman, S., Schughart, L.A., Rickardson, L., D'Arcy, P., Gullbo, J., Nygren, P., Larsson, R. and Linder, S. (2014) Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat. Commun., 5, 3295.
21 Seyfried, T.N., Flores, R.E., Poff, A.M. and D'Agostino, D.P. (2014) Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis, 35, 515-527.   DOI   ScienceOn
22 Coller, H.A. (2014) Is cancer a metabolic disease? Am. J. Pathol., 184, 4-17.   DOI   ScienceOn
23 Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R. and Morris, A.D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ, 330, 1304-1305.   DOI   ScienceOn
24 Pessayre, D., Fromenty, B., Berson, A., Robin, M.A., Letteron, P., Moreau, R. and Mansouri, A. (2012) Central role of mitochondria in drug-induced liver injury. Drug Metab. Rev., 44, 34-87.   DOI   ScienceOn
25 Pernicova, I. and Korbonits, M. (2014) Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol., 10, 143-156.   DOI   ScienceOn
26 Menendez, J.A., Quirantes-Pine, R., Rodriguez-Gallego, E., Cufi, S., Corominas-Faja, B., Cuyas, E., Bosch-Barrera, J., Martin-Castillo, B., Segura-Carretero, A. and Joven, J. (2014) Oncobiguanides: Paracelsus' law and nonconventional routes for administering diabetobiguanides for cancer treatment. Oncotarget, 5, 2344-2348.
27 Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57-70.   DOI   ScienceOn
28 Szczepanek, K., Chen, Q., Larner, A.C. and Lesnefsky, E.J. (2012) Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion, 12, 180-189.   DOI   ScienceOn
29 Vaupel, P., Hockel, M. and Mayer, A. (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signaling, 9, 1221-1235.   DOI   ScienceOn
30 Phan, L.M., Yeung, S.C. and Lee, M.H. (2014) Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med., 11, 1-19.
31 Warburg, O.H. (1930) The Metabolism of Tumours: Investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlem. Arnold Constable, London, pp. 1-327.
32 Koppenol, W.H., Bounds, P.L. and Dang, C.V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 11, 325-337.   DOI   ScienceOn
33 Rask-Andersen, M., Zhang, J., Fabbro, D. and Schioth, H.B. (2014) Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol. Sci., 35, 604-620.   DOI   ScienceOn
34 Nahta, R. and Esteva, F.J. (2007) Trastuzumab: triumphs and tribulations. Oncogene, 26, 3637-3643.   DOI   ScienceOn
35 Ramos, P. and Bentires-Alj, M. (2014) Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene, Epub ahead of print.
36 Garber, K. (2006) Energy deregulation: licensing tumors to grow. Science, 312, 1158-1159.   DOI   ScienceOn
37 Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 1029-1033.   DOI   ScienceOn
38 Granchi, C., Fancelli, D. and Minutolo, F. (2014) An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg. Med. Chem. Lett., 24, 4915-4925.   DOI   ScienceOn
39 Pathania, D., Millard, M. and Neamati, N. (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Delivery Rev., 61, 1250-1275.   DOI   ScienceOn
40 Chen, X., Qian, Y. and Wu, S. (2014) The warburg effect: Evolving interpretations of an established concept. Free Radical Biol. Med., Epub ahead of print.
41 Siegel, R., Ma, J., Zou, Z. and Jemal, A. (2014) Cancer statistics, 2014. Ca Cancer J. Clin., 64, 9-29.   DOI
42 Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674.   DOI   ScienceOn
43 Cantor, J.R. and Sabatini, D.M. (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discovery, 2, 881-898.   DOI
44 Porcelli, A.M., Ghelli, A., Ceccarelli, C., Lang, M., Cenacchi, G., Capristo, M., Pennisi, L.F., Morra, I., Ciccarelli, E., Melcarne, A., Bartoletti-Stella, A., Salfi, N., Tallini, G., Martinuzzi, A., Carelli, V., Attimonelli, M., Rugolo, M., Romeo, G. and Gasparre, G. (2010) The genetic and metabolic signature of oncocytic transformation implicates HIF1alpha destabilization. Hum. Mol. Genet., 19, 1019-1032.   DOI   ScienceOn
45 Singh, A.K., Pandey, P., Tewari, M., Pandey, H.P. and Shukla, H.S. (2014) Human mitochondrial genome flaws and risk of cancer. Mitochondrial DNA, 25, 329-334.   DOI   ScienceOn
46 Damas, J., Samuels, D.C., Carneiro, J., Amorim, A. and Pereira, F. (2014) Mitochondrial DNA rearrangements in health and disease--a comprehensive study. Hum. Mutat., 35, 1-14.   DOI   ScienceOn
47 Jones, J.B., Song, J.J., Hempen, P.M., Parmigiani, G., Hruban, R.H. and Kern, S.E. (2001) Detection of mitochondrial DNA mutations in pancreatic cancer offers a "mass"-ive advantage over detection of nuclear DNA mutations. Cancer Res., 61, 1299-1304.
48 Lai, C.H., Huang, S.F., Liao, C.T., Chen, I.H., Wang, H.M. and Hsieh, L.L. (2013) Clinical significance in oral cavity squamous cell carcinoma of pathogenic somatic mitochondrial mutations. PLoS One, 8, e65578.   DOI
49 Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J. and Sobrinho-Simoes, M. (2002) Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol., 160, 1857-1865.   DOI   ScienceOn
50 Ju, Y.S., Alexandrov, L.B., Gerstung, M., Martincorena, I., Nik-Zainal, S., Ramakrishna, M., Davies, H.R., Papaemmanuil, E., Gundem, G., Shlien, A., Bolli, N., Behjati, S., Tarpey, P.S., Nangalia, J., Massie, C.E., Butler, A.P., Teague, J.W., Vassiliou, G.S., Green, A.R., Du, M.Q., Unnikrishnan, A., Pimanda, J.E., Teh, B.T., Munshi, N., Greaves, M., Vyas, P., El-Naggar, A.K., Santarius, T., Collins, V.P., Grundy, R., Taylor, J.A., Hayes, D.N., Malkin, D., Foster, C.S., Warren, A.Y., Whitaker, H.C., Brewer, D., Eeles, R., Cooper, C., Neal, D., Visakorpi, T., Isaacs, W.B., Bova, G.S., Flanagan, A.M., Futreal, P.A., Lynch, A.G., Chinnery, P.F., McDermott, U., Stratton, M.R. and Campbell, P.J. (2014) Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. eLife, 3, e02935.
51 Pike Winer, L.S. and Wu, M. (2014) Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate. PLoS One, 9, e109916.   DOI   ScienceOn
52 Bridges, H.R., Jones, A.J., Pollak, M.N. and Hirst, J. (2014) Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J., 462, 475-487.   DOI   ScienceOn