DOI QR코드

DOI QR Code

Gompertz modeling을 이용한 약물유출 예측시스템의 최적화

Application of Optimized Gompertz Algorithm for Estimation of Controlled Drug Release

  • 최세운 (동명대학교 의용공학과) ;
  • 우영운 (동의대학교 멀티미디어공학과)
  • Choe, Se-Woon (Department of Biomedical Engineering, Tongmyong University) ;
  • Woo, Young Woon (Department of Multimedia Engineering, Dong-Eui University)
  • 투고 : 2014.09.23
  • 심사 : 2014.10.31
  • 발행 : 2014.12.31

초록

Gompertz modeling은 고령화 사회에 접어들기 시작하며 노령인구 예측에 성공적인 결과를 보여줌으로써 최근 많은 주목을 받고 있다. 또한 항암 치료제의 독성으로 인해 발생할 수 있는 부작용을 미연에 방지하고자 보다 효과적인 치료제의 사용에 관한 의료 생체분야에서 활발한 개발이 시도되어 왔으나 전임상 및 임상실험으로의 응용이 가능한 모델링은 극히 제한적이며, 모델링의 검증을 위한 생체실험의 분석 시스템의 최적화가 힘들다는 한계가 있다. 본 논문에서는 Gompertz modeling을 응용하여 새로운 겸형적혈구의 약물유출 예측시스템을 개발하고, 여기된 광증감제의 겸형적혈구 부착을 통해 효과적인 약물유출 제어방법을 ex-vivo 실험을 통해 검증하여 최적화된 예측 시스템의 결과를 비교 분석 할 수 있었다. 따라서 이와 같이 최적화된 Gompertz modeling을 이용한 새로운 약물전달 시스템이 항암치료에 반영된다면 부작용에 기인한 환자들의 신체적 고통과 치료를 위한 경제적 부담을 경감시키는 효과를 유도하며, 나아가 항암 치료제의 정확한 전달률을 증가시켜 보다 효과적인 항암치료를 기대할 수 있다.

A Gompertz modeling, sigmoid in shape, is a widely used application for social science, natural science, engineering, and medical research to allow confident approximation and accurate analysis and has been applied to estimate an elderly population on aging of population. Due to the high toxicity of currently available drug delivery vehicles, various efforts have been made to reduce side-effects in clinical fields, but its application to preclinical and clinical studies is limited and there are some difficulties to optimize the parameters of Gompertz modeling applicable to preclinical studies. Therefore, in this study, we demonstrated the ability of sickle red blood cells loaded by hypotonic dialysis then photosensitized and light-activated ex vivo for controlled release and simultaneously optimized Gompertz function to evaluate controlled drug release properties of photosensitized sickle red blood cells to reduce pain-related treatments in cancer patients.

키워드

참고문헌

  1. B. Haley, E. Frenkel. "Nanoparticles for drug delivery in cancer treatment," Urologic Oncology, Vol. 26, pp. 57-64, January-February 2008. https://doi.org/10.1016/j.urolonc.2007.03.015
  2. V. P. Torchilin, "Recent advances with liposomes as pharmaceutical carriers," Nature Reviews Drug Discovery, Vol. 4, pp. 145-160, February 2005. https://doi.org/10.1038/nrd1632
  3. L. H. Reddy, "Drug delivery to tumours: recent strategies," Journal of Pharmacy and Pharmacology, Vol. 57, Issue 10, pp. 1231-1242, February 2010.
  4. R. I. Pakunlu, Y. Wang, M. Saad, J. J. Khandare, V. Starovoytov, T. Minko, "In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug," Journal of Controlled Release, Vol. 114, Issue 2, pp. 153-162, August 2006. https://doi.org/10.1016/j.jconrel.2006.06.010
  5. Y. Godfrin, F. Horand, R. Franco, E. Dufour, E. Kosenko, B. Bax, A Banz, O. Skorokhod, J. Lanao, V. Vitvitsky, E. Sinauridze, V. Bourgeaux, K. C. Gunter, "International Seminar on the Red Blood Cells as Vehicles for Drugs" Expert Opnion on Biological Therapy, Vol. 12, No. 1, pp. 127-133, January 2012. https://doi.org/10.1517/14712598.2012.631909
  6. E. Ruoslahti, "Vascular zip codes in angiogenesis and metastasis," Biochemical Society Transactions, Vol. 32, pp. 397-402, June 2004. https://doi.org/10.1042/BST0320397
  7. M. Milosevic, I. Quirt, W. Levin, A. Fyles, L. Manchul, W. Chapman. "Intratumoral sickling in a patient with cervix cancer and sickle trait: effect on blood flow and oxygenation," Gynecologic Oncology, Vol. 83, Issue 2, pp. 428-431, November 2001. https://doi.org/10.1006/gyno.2001.6426
  8. M. A. Al-Akhras, L. I. Grossweiner, "Sensitization of photohemolysis by hypericin and Photofrin," Journal of Photochemistry and Photobiology B: Biology, Vol. 34, Issue 2-3, pp. 169-175, July 1996. https://doi.org/10.1016/1011-1344(95)07279-9
  9. B. Gompertz, "On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies," Philosophical Transactions of the Royal Society of London, Vol. 115, pp. 513-583, January 1825. https://doi.org/10.1098/rstl.1825.0026
  10. D. Jukic, G. Kralik, R. Scitovski, "Least-squares fitting Gompertz curve," Journal of Computational and Applied Mathematics, Vol. 169, Issue 2, pp. 359-375, August 2004. https://doi.org/10.1016/j.cam.2003.12.030
  11. N. J. Moura Jr, M. B. Ribeiro, "Evidence for the Gompertz curve in the income distribution of Brazil 1978-2005," The European Physical Journal B, Vol. 67, Issue 1, pp. 101-120, January 2009. https://doi.org/10.1140/epjb/e2008-00469-1
  12. J. Moreira, A. Deutsch, "Cellular automation models of tumor development: A critical review," Advances in Complex Systems, Vol. 5, Issue 2, pp. 247-267, June 2002. https://doi.org/10.1142/S0219525902000572
  13. V. S. Gopal, A. R. Kumar, A. N. Usha, A. Karthik, N. Udupa, "Effective drug targeting by Erythrocytes as Carrier Systems," Current Trends in Biotechnology and Pharmacy, Vol. 1, pp. 18-33, June 2007.
  14. S. Choe, D. S. Terman, A. E. Rivers, J. Rivera, R. Lottenberg, B. S. Sorg, "Drug-loaded sickle cells programmed ex vivo for delayed hemolysis target hypoxic tumor microvessels and augment tumor drug delivery," Journal of Controlled Release, Vol. 171, Issue 2, pp. 184-192, July 2013 https://doi.org/10.1016/j.jconrel.2013.07.008

피인용 문헌

  1. 전임상 혈관분석을 위한 초분광 이미징 시스템의 활용 vol.20, pp.4, 2014, https://doi.org/10.9708/jksci.2015.20.4.069