DOI QR코드

DOI QR Code

Powder Injection Molding of Translucent Alumina using Supercritical Fluid Debinding

  • Kim, Hyung Soo (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University) ;
  • Suk, Myung Jin (Department of Materials and Metallurgical Engineering, Kangwon National University) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
  • 투고 : 2014.10.07
  • 심사 : 2014.11.26
  • 발행 : 2014.12.28

초록

The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide ($CO_2$) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical $CO_2$ was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at $50^{\circ}C$ and 20 MPa that represents the lowest extraction rate, $8.19{\times}10^{-3}m^2/sec$, corresponds to the largest grain size of $14.7{\mu}m$ and the highest optical transmittance of 45.2%.

키워드

참고문헌

  1. J. Y. Roh, J. Kwon, C. S. Lee and J. S. Choi: Ceram. Int., 37 (2011) 321. https://doi.org/10.1016/j.ceramint.2010.09.011
  2. D. S. Kim, J. H. Lee, R. J. Sung, S. W. Kim, H. S. Kim and J. S. Park: J. Eur. Ceram. Soc., 27 (2007) 3629. https://doi.org/10.1016/j.jeurceramsoc.2007.02.002
  3. T. Chartier, M. Ferrato and J. B. Baumard: J. Eur. Ceram. Soc., 15 (1995) 899. https://doi.org/10.1016/0955-2219(95)00059-4
  4. J. Crank: Oxford University Press, Oxford, 44 (1977).
  5. T. Shimizu and S. Mochizuki: Mechanical Engineering Laboratory, 51 (1997) 41.
  6. M. Rei, E. C. Milke, R. M. Gomes, L. Schaeffer and J. K. Souza: Mater. Lett., 52 (2002) 360. https://doi.org/10.1016/S0167-577X(01)00422-0
  7. Y. H. Kim, J. S. Lim, Y. W. Lee and S. N. Kim: J. Korean Powder Metall. Inst., 8 (2001) 91.
  8. O. Kajimoto: Chem. Rev., 99 (1999) 355. https://doi.org/10.1021/cr970031l
  9. S. C. Tucker: Chem. Rev., 99 (1999) 391. https://doi.org/10.1021/cr9700437
  10. M. D. Lugue de Castro and M. Valcarcel M. T. Tena: Spinger-verlag, 31 (1994) 150.
  11. P. G. Shewmon: Diffusion in Solids, McGraw-Hill, 18 (1963).
  12. Y. Sato, T. Takikawa, S. Takishima and H. Masuoka: J. Supercrit. Fluids, 19 (2001) 187. https://doi.org/10.1016/S0896-8446(00)00092-9
  13. M. L. Lee and K. E. Markides: Chromatography conf. Inc. Provo, UT (1990).
  14. A. Ferri, M. Banchero, L. Manna and S. Sicardi: J. of Supercrit. Fluids, 31 (2004) 133. https://doi.org/10.1016/j.supflu.2003.11.004
  15. Q. Li, Z. Zhang and C. Zhong: J. of Chem. Eng. Data, 48 (2003) 61. https://doi.org/10.1021/je020080h
  16. D. E. Knox: Int. Res. J. Pure Appl. Chem., 46 (2011) 1255.
  17. E. Nishikawa, N. Wakao and N. Nakashima: J. of Supercrit. Fluids, 4 (1991) 265. https://doi.org/10.1016/0896-8446(91)90021-W
  18. D. E. Knox: Int. Res. J. Pure. Appl. Chem., 46 (2011) 1255.
  19. S. Angus, A. Armstrong and K. M. de Reuk: Pergamon, Oxford (1976) 3.