References
- Aureli, F., Maranzoni, A., Mignosa, P., and Ziveri, C. (2008). "A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography." Advances in Water Resources, Vol. 31, pp. 962-974. https://doi.org/10.1016/j.advwatres.2008.03.005
- Begnudelli, L., and Sanders, B.F. (2006). "Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying." Journal of Hydraulic Engineering, Vol. 132, pp. 371-384. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(371)
- Bermudez, A., and Vazquez, M.E. (1994). "Upwind methods for hyperbolic conservation laws with source terms." Computers & Fluids, Vol. 23, pp. 1049-1071. https://doi.org/10.1016/0045-7930(94)90004-3
- Bouchut, F., Mangeney-Castelnau, A., Perthanme, B., and Vilotte, J.-P. (2003). "A new model of Saint Venant and Savage.Hutter type for gravity driven shallow water flows." Comptes Rendus de l'Academie des Sciences-Series I , Vol. 336, pp. 531-536.
- Chow, V.T. (1959). Open-channel hydraulics. McGraw-Hill.
- Dressler, R.F. (1978). "New nonlinear shallow-flow equations with curvature." Journal of Hydraulic Research, Vol. 16, pp. 205-222. https://doi.org/10.1080/00221687809499617
- Hwang, S.-Y. (2013). "Finite-volume model for shallowwater flow over uneven bottom." Journal of Korea Water Resources Association, Vol. 46, pp. 139-153 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.2.139
- Hwang, S.-Y., and Lee, S.H. (2012). "An application of the HLLL approximate Riemann solver to the shallow water equations." Journal of Korea Society of Civil Engineers, Vol. 32, pp. 21-27 (in Korean).
- Keller, J.B. (2003). "Shallow-water theory for arbitrary slopes of the bottom." Journal of Fluid Mechanics, Vol. 489, pp. 345-348. https://doi.org/10.1017/S0022112003005342
- Lee, K.S., and Lee, S.-T. (1988). "Two-dimensional finite-volume unsteady-flow model for shocks." Journal of Korea Water Resources Association, Vol. 31, pp. 279-290 (in Korean).
- Liggett, J.A. (1994). Fluid mechanics. McGraw-Hill.
- Linde, T. (2002). "A practical, general-purpose, two-state HLL Riemann solver for hyperbolic conservation laws." International Journal for Numerical Methods in Fluids, Vol. 40, pp. 391-402. https://doi.org/10.1002/fld.312
- Savage, S.B., and Hutter, K. (1994). "The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis." Acta Mechanica, Vol. 86, pp. 201-223.
- Soares-Frazao, S. (2007). "Experiments of dam-break wave over a triangular bottom sill." Journal of Hydraulic Research, Vol. 45, pp. 19-26. https://doi.org/10.1080/00221686.2007.9521829
- Van Leer, B. (1979). "Towards the ultimate conservative difference scheme V. a second order sequel to Godunov's method." Journal of Computational Physics, Vol. 32, pp. 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
- Van Leer, B. (2006). "Upwind and high-resolution method for compressible flow: from donor cell to residual-distribution schemes." Communications in Computational Physics, Vol. 1, pp. 192-206.
- Weiyan, T. (1992). Shallowwater hydrodynamics. Elsevier Science Publishers.