DOI QR코드

DOI QR Code

암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성

Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide

  • 박미선 (충남대학교 대학원 바이오응용화학과) ;
  • 윤국진 (충남대학교 대학원 바이오응용화학과) ;
  • 이영석 (충남대학교 대학원 바이오응용화학과)
  • Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Yun, Kug Jin (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 투고 : 2014.09.12
  • 심사 : 2014.09.29
  • 발행 : 2014.12.10

초록

본 연구에서는 그래핀 옥사이드의 전기적 특성을 향상시키고자 그래핀 옥사이드에 암모니아수 처리를 이용하여 아민화가 이루어진 그래핀 옥사이드를 제조하였다. 그리고, 아민화된 그래핀 옥사이드의 전기적 특성을 평가하고자 이를 필름으로 제조하여 전자파차폐효율을 측정하였다. 암모니아수 처리 농도가 증가함에 따라 그래핀 옥사이드 표면의 질소 관능기가 증가함을 XPS에 의하여 확인하였으며, 또한, 전자파차폐효율 측정 결과 암모니아수 처리된 그래핀 옥사이드의 전자파차폐효율 특성이 우수함을 확인하였다. 21% 암모니아수 농도로 처리한 그래핀 옥사이드는 2950 MHz 이상에서 -5 dB 이상의 전자파차폐효율을 보여주었으며, 이러한 실험 결과들은 질소 관능기가 그래핀 옥사이드 내에 전자전달을 용이하게 하여 흡수되는 전자파 양을 증가시켰기 때문으로 사료된다.

In this study, nitrogen doped graphene oxide (GO) was prepared using liquid phase ammonia treatment to improve its electrical properties. Also, the aminated GO was manufactured into a film format and the electromagnetic interference (EMI) shielding efficiency was measured to evaluate its electrical properties. The XPS result showed that the increase of liquid phase ammonia treatment concentration led to the increased nitrogen functional group on the GO surface. The measurement of EMI shielding efficiency reveals that EMI shielding efficiency of the liquid phase ammonia treated GO was better than that of non-treated GO. When GO was treated using the ammonia solution of 21% concentration, the EMI shielding efficiency increased by -5 dB at higher than 2950 MHz. These results were maybe due to the fact that nitrogen functional groups on GO help to improve the absorbance of electromagnetic waves via facile electron transfer.

키워드

참고문헌

  1. J. I. Lee and H. T. Jung, Technical status of carbon nanotubes composites, Korean Chem. Eng. Res., 46, 7-14 (2008).
  2. D. Y. Kim, K. J. Yun, and Y. S. Lee, Electromagnetic interference shielding characteristics of electroless nickel plated carbon nanotubes, Appl. Chem. Eng., 25, 268-273 (2014). https://doi.org/10.14478/ace.2014.1021
  3. H. He, J. Klinowski, M. Foster, and A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett., 287, 53-56 (1998). https://doi.org/10.1016/S0009-2614(98)00144-4
  4. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  5. J. Yang, M. Wu, F. Chen, Z. Fei, and M. Zhong, Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene, J. supercritical fluids, 56, 201-207 (2011). https://doi.org/10.1016/j.supflu.2010.12.014
  6. S. Park, History of graphene oxide and future direction, Prospectives of industrial chemistry, 16, 1-5 (2013).
  7. Y. Kim, S. Cho, S. K. Park, J. D. Jeon, and Y. S. Lee, Electrochemical properties of carbon felt electrode for vanadium redox flow batteries by liquid ammonia treatment, Appl. Chem. Eng., 25, 292-299 (2014). https://doi.org/10.14478/ace.2014.1030
  8. G. Yang, H. Chena, H. Qin, and Y. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci., 293, 299-305 (2014). https://doi.org/10.1016/j.apsusc.2013.12.155
  9. T. M. Byrne, X. Gu, P. Hou, F. S. Cannon, N. R. Brown, and C. Nieto-Delgado, Quaternary nitrogen activated carbons for removal of perchlorate with electrochemical regeneration, Carbon, 73, 1-12 (2014). https://doi.org/10.1016/j.carbon.2014.02.020
  10. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, J. Mater. Chem., 21, 8038-8044 (2011). https://doi.org/10.1039/c1jm10845j
  11. J. H. Kim, S. Cho, T. S. Bae, and Y. S. Lee, Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction, Sens. Actuators B, 197, 20-27 (2014). https://doi.org/10.1016/j.snb.2014.02.054
  12. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Preparation and electrochemical characterization of activated carbon electrode by amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
  13. B. Stohr, H. P. Boehm, and R. Schlogl, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon, 29, 707-720 (1991). https://doi.org/10.1016/0008-6223(91)90006-5
  14. H. P. Boehm, G. Mair, T. Stoehr, A. R. De Rincon, and B. Tereczki, Carbon as a catalyst in oxidation reactions and hydrogen halide elimination reactions, Fuel, 63, 1061-1063 (1984). https://doi.org/10.1016/0016-2361(84)90188-1
  15. S. W. Chook, C. H. Chia, S. Zakaria, M. K. Ayob, K. L. Chee, N. M. Huang, H. M. Neoh, H. N. Lim, R. Jamal, and R. Rahman, Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method, Nanoscale Res. Lett., 7, 541-547 (2012). https://doi.org/10.1186/1556-276X-7-541
  16. A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47-57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
  17. H. Zhang, T. Kuila, N. H. Kim, D. S. Yu, and J. H. Lee, Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials, Carbon, 69, 66-78 (2014). https://doi.org/10.1016/j.carbon.2013.11.059
  18. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 187401-187405 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  19. B. K. Saikia, R. K. Boruah, and P. K. Gogoi, A X-ray diffraction analysis on graphene layers of Assam coal, J. Chem. Sci., 121, 103-106 (2009). https://doi.org/10.1007/s12039-009-0012-0
  20. H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, XRD analysis of carbon stacking structure in coal during heat treatment, Fuel, 83 2427-2433 (2007).
  21. E. Jeong, M. J. Jung, and Y. S. Lee, Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes, J. Fluorine Chem., 150, 98-103 (2013). https://doi.org/10.1016/j.jfluchem.2013.02.017
  22. C. Popov, M. F. Plass, A. Bergmaier, and W. Kulisch, Synthesis of carbon nitride films by low-power inductively coupled plasma-activated transport reactions from a solid carbon source, Appl. Phys. A, 69, 241-244 (1999).
  23. B. C. Bai, S. Cho, H. R. Yu, K. B. Yi, K. D. Kim, and Y. S. Lee, Effects of aminated carbon molecular sieves on breakthrough curve behavior in $CO_2/CH_4$ separation, J. Ind. Eng. Chem., 19, 776-783 (2013). https://doi.org/10.1016/j.jiec.2012.10.016
  24. P. H. Matter, L. Zhang, and U. S. Ozkan, The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction, J. Catal., 239, 83-96 (2006). https://doi.org/10.1016/j.jcat.2006.01.022
  25. R. Arrigo, M. Havecker, R. Schlogl, and D. S. Su, Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes, Chem. Commun., 40, 4891-4893 (2008).
  26. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, 33, 1641-1653 (1995). https://doi.org/10.1016/0008-6223(95)00154-6
  27. M. Seredych, D. H. Jurcakova, G. O. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475-1488 (2008). https://doi.org/10.1016/j.carbon.2008.06.027
  28. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC, J. Ind. Eng. Chem, 18, 116-122 (2012). https://doi.org/10.1016/j.jiec.2011.11.074
  29. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, Jun Liu, Z. Yang, and Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 195, 4375-4379 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.015

피인용 문헌

  1. Effects of the Graphene Oxide on Glucose Oxidase Immobilization Capabilities and Sensitivities of Carbon Nanotube-based Glucose Biosensor Electrodes vol.26, pp.1, 2015, https://doi.org/10.14478/ace.2014.1114
  2. 질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성 vol.28, pp.1, 2017, https://doi.org/10.14478/ace.2016.1111