DOI QR코드

DOI QR Code

Ethosome에 캡슐화된 Palmitoyl Tripeptide의 항균효과

Antimicrobial Activities of Ethosome-Encapsulated Palmitoyl Tripeptide

  • 이연정 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 이윤섭 (미원상사(주)) ;
  • 진병석 (동덕여자대학교 자연과학대학 응용화학과)
  • 투고 : 2014.08.01
  • 심사 : 2014.10.01
  • 발행 : 2014.12.10

초록

Palmitoyl tripeptide (M330)는 최소 저해농도(MIC) 결정 실험에서 기존 화장품 방부제인 메칠 파라벤, 페녹시 에탄올보다 적은 농도로도 높은 항균활성을 나타냈다. 하지만 화장품 제형에 M330을 혼합하면 점증제인 carbopol (carboxy vinyl polymer)과의 정전기적 인력 결합으로 침전이 생기면서 점도가 떨어지고 항균효과도 크게 떨어지는 현상이 일어났다. 따라서 화장품 제형에서 M330의 항균효과를 회복시키고 제형의 침전을 방지하기 위하여 ethosome 베시클로 M330의 캡슐화를 시도하였다. M330을 ethosome에 캡슐화하여 화장품 제형에 첨가한 결과 침전이 형성되지 않았고 캡슐화되지 않은 M330을 첨가했을 때보다 점도의 감소폭이 적었다. 챌린지 테스트를 시행한 결과, M330을 캡슐화하여 첨가했을 때 E. coli나 P. aeruginosa 등의 그람 음성균에서는 항균활성이 더욱 향상되었지만 그람 양성균인 S. aureus와 진균인 C. albicans에서는 캡슐화에 의한 효과가 없었고, 특히 C. albicans에서는 1주일 동안 생균수의 감소가 전혀 없었다. M330에 EDTA를 혼합하여 실시한 챌린지 테스트 결과 C. albicans에 대한 항균활성이 크게 증가함을 확인하였고, 두 성분을 함께 캡슐화 했을 때는 더욱 빠른 속도로 균이 사멸하였다.

Palmitoyl tripeptide (M330) showed higher antimicrobial activities than methyl paraben or phenoxy ethanol through minimum inhibitory concentration (MIC) test. However, when the M330 was added into cosmetic formulation, white precipitates formed due to the electrostatic interaction between M330 and carbopol (carboxy vinyl polymer) as a thickener in cosmetics, and the viscosity of cosmetics decreased sharply. Also, the antimicrobial activities of M330 in cosmetics became lower than those of methyl paraben or phenoxy ethanol. Thus, the encapsulation of M330 in ethosome vesicle was attempted in order to recover the declined antimicrobial activities of M330 in cosmetics and prevent the precipitates from forming. When ethosome-encapsulated M330 was added into cosmetics, the precipitates did not form, and the decrease in the viscosity of cosmetics was not large compared to the addition of unencapsulated M330. Challenge tests showed that antimicrobial activities against gram negative bacteria were improved by the encapsulation of M330, but the encapsulation was not effective against gram positive bacteria and fungus. A combination of M330 with EDTA showed synergistic inhibitory potential against C. albicans. After coencapsulation of M330 and EDTA in ethosome, antimicrobial activities proved to be higher than those of unencapsulated M330 and EDTA.

키워드

참고문헌

  1. D. S. Orth and J. J. Kabara, Preservative-free and self-preserving cosmetics and drugs: application of hurdle technology, Cosmet. Toiletr., 113, 51-58 (1998).
  2. D. S. Orth, Use of parabens as cosmetic preservatives, Int. J. Dermatol., 19, 504-505 (1980). https://doi.org/10.1111/j.1365-4362.1980.tb00369.x
  3. D. Steinberg, Z. Hirschfeld, I. Tayeb, S. Ben-Yosef, A. David, and M. Friedman, The effect of parabens in a mouthwash and incorporated into a sustained release varnish on salivary bacteria, J. Dent., 27, 101-106 (1999). https://doi.org/10.1016/S0300-5712(98)00040-2
  4. E. J. Routledge, J. Parker, J. Odum, J. Ashby, and J. P. Sumpter, Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic, Toxicol. Appl. Pharm., 153, 12-19 (1998). https://doi.org/10.1006/taap.1998.8544
  5. S. Oishi, Effects of propyl paraben on the male reproductive system, Food Chem. Toxicol., 40, 1807-1813 (2002). https://doi.org/10.1016/S0278-6915(02)00204-1
  6. W. F. Schorr, Paraben allergy: A cause of intractable dermatitis, JAMA, 204, 859-862 (1968). https://doi.org/10.1001/jama.1968.03140230017004
  7. I. L. Schamberg, Allergic contact dermatitis to methyl and propyl paraben, Arch Dermatol., 95, 626-628 (1967). https://doi.org/10.1001/archderm.1967.01600360072011
  8. P. D. Darbre1, A. Aljarrah, W. R. Miller, N. G. Coldham, M. J. Sauer, and G. S. Pope, Concentrations of parabens in human breast tumours, J. Appl. Toxicol., 24, 5-13 (2004). https://doi.org/10.1002/jat.958
  9. J. Garcia-Gavin, R. Lissens, A. Timmermans, and A. Goossens, Allergic contact dermatitis caused by isopropyl alcohol: a missed allergen?, Contact Dermatitis., 65, 101-106 (2011). https://doi.org/10.1111/j.1600-0536.2011.01936.x
  10. D. Lujan, B. Hernandez-Machin, Y. Penate, and L. Borrego, Contact urticaria due to phenoxy ethanol in an aftershave, Dermatitis., 20, E10 (2009).
  11. S. Pfuhler and H. U. Wolf, Effects of the formaldehyde releasing preservatives dimethylol urea and diazolidinyl urea in several short-term genotoxicity tests, Mutation Res., 514, 133-146 (2002). https://doi.org/10.1016/S1383-5718(01)00335-7
  12. S. H. Mandy, Contact dermatitis to substituted imidazolidinyl urea-a common preservative in cosmetics, Archs Derm., 110, 463 (1974).
  13. A. Giacomettia et al., Antimicrobial activity of polycationic peptides, Peptides., 20, 1265-1273 (1999). https://doi.org/10.1016/S0196-9781(99)00131-X
  14. A. Giacomettia, O. Cirionia, M. S. Del Pretea, F. Barchiesia, A. Mataloni Paggia, E. Petrellib, and G. Scalisea, Comparative activities of polycationic peptides and clinically used antimicrobial agents against multidrug-resistant nosocomial isolates of acinetobacter baumannii, J. Antimicrob. Chemother., 46, 807-810 (2000). https://doi.org/10.1093/jac/46.5.807
  15. M. Malmsten et al, Antimicrobial peptides derived from growth factors, Growth Factors, 25, 60-70 (2007). https://doi.org/10.1080/08977190701344120
  16. S. Maher and S. McClean, Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol, Biochem. Pharmacol., 75, 1104-1114 (2008). https://doi.org/10.1016/j.bcp.2007.10.029
  17. 이윤섭 and 최혜정, 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물, 특허 10-1151878 (2012).
  18. T. M. Taylor, S. Gaysinsky, P. M. Davison, B. D. Bruce, and J. Weiss, Characterization of antimicrobial-bearing liposomes by zeta-potential, vesicle size, and encapsulation efficiency, Food Biophysics, 2, 1-9 (2007). https://doi.org/10.1007/s11483-007-9023-x
  19. O. Gortzi, S. Lalas, I. Chinou, and J. Tsaknis, Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes, Molecules, 12, 932-945 (2007). https://doi.org/10.3390/12050932
  20. P. S. Malheiros, V. Sant'Anna, M. S. Barbosa, A. Brandeli, and B. D. G. Melo Franco, Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese, Int. J. Food Microbiol., 156, 272-277 (2012). https://doi.org/10.1016/j.ijfoodmicro.2012.04.004
  21. P. S. Malheiros, D. J. Daroit, and A. Brandeli, Food applications of liposome-encapsulated antimicrobial peptides, Trends in Food Science & Tech., 21, 284-292 (2010). https://doi.org/10.1016/j.tifs.2010.03.003
  22. T. M. Taylor, B. D. Bruce, J. Weiss, and P. M. Davidson, Listeria Monocytogenes and Escherichia coli O157:H7 inhibition in vitro by liposome encapsulated nisin and ethylene diaminetetraacetic acid, J. Food Safety, 28, 183-197 (2008). https://doi.org/10.1111/j.1745-4565.2008.00113.x
  23. J. K. Branen and P. M. Davison, Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylene diaminetetraacetic acid and lactoferrin, Int. J. Food Microbiol., 90, 63-74 (2004). https://doi.org/10.1016/S0168-1605(03)00172-7