DOI QR코드

DOI QR Code

Relationship between Interstate Highway Accidents and Heterogeneous Geometrics by Random Parameter Negative Binomial Model - A case of Interstate Highway in Washington State, USA

확률적 모수를 고려한 음이항모형에 의한 교통사고와 기하구조와의 관계 - 미국 워싱턴 주(州) 고속도로를 중심으로

  • 박민호 (펜실베니아 주립대학교)
  • Received : 2013.04.11
  • Accepted : 2013.06.10
  • Published : 2013.11.30

Abstract

The objective of this study is finding the relationship between interstate highway accident frequencies and geometrics using Random Parameter Negative Binomial model. Even though it is impossible to take account of the same design criteria to the all segments or corridors on the road in reality, previous research estimated the fixed value of coefficients without considering each segment's characteristic. The drawback of the traditional negative binomial is not to explain the integrated variations in terms of time and the distinct characters specific segment has. This results in under-estimation of the standard error which inflates the t-value and finally, affects the modeling estimation. Therefore, this study tries to find the relationship of accident frequencies with the heterogeneous geometrics using 9-years and 7-interstate highway data in Washington State area. 16-types of geometrics are used to derive the model which is compared with the traditional negative binomial Model to understand which Model is more suitable. In addition, by calculating marginal effect and elasticity, heterogeneous variables' effect to the accidents are estimated. Hopefully, this study will help to estiblish the future policy of geometrics.

이 연구는 확률적 모수를 고려한 음이항회귀분석을 이용하여 고속도로에서의 사고와 기하구조와의 관계를 파악하는데 목적이 있다. 고속도로에서의 기하구조는 모든 구간에 동일한 설계요소가 적용되기에는 현실적으로 불가능함에도 불구하고, 지금까지의 연구에서는 모형을 통해 도출되는 계수값이 구간에 설치된 기하구조의 특성에 관계없이 항상 고정된 값으로 추정되어왔다. 고정된 값을 이용한 일반적인 음이항모형은 시간적 변화 또는 각 대상구간이 가지고 있는 고유한 특성에 따른 변화를 통합하여 설명하지 못한다는 단점이 있으며, 이로 인해 추정된 계수의 표준오차가 과소추정되어 t-값이 부풀려지게 되며, 그 결과 모형의 설명력이 떨어지게 된다. 따라서, 이 연구에서는 워싱턴 주에 위치하고 있는 7개의 고속도로에서 발생한 9년동안의 사고자료 및 기하구조자료를 이용하여 구간별로 상이한 기하구조가 사고에 미치는 영향을 알아보고자 한다. 총 16개의 기하구조 관련 변수가 모형 도출에 이용되었으며, 기존의 음이항모형과의 비교를 통해 이 연구에서 제시하는 모형이 교통사고와 기하구조와의 관계파악에 더욱 적합함을 보이고자 한다. 그리고, 각 변수의 한계효용 및 탄력성 분석을 통해 이질성을 가지는 기하구조가 사고에 미치는 영향을 제시하고자 한다. 이는 향후 기하구조 관련 정책수립에 도움이 될 것으로 판단된다.

Keywords

References

  1. Alfonso, M., Lucio, C. and Renato, L. (2008). "Crash prediction models for rural motorways." Transportation Research Record: Journal of the Transportation Research Board, No. 2083, pp. 180-189, Transportation Research Board, Washington D.C.
  2. Bhat, C. (2003). "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences." Transportation Research Part B, Vol. 37, No. 1, pp. 837-855. https://doi.org/10.1016/S0191-2615(02)00090-5
  3. Chin, H. C. and Quddus, M. A. (2003). "Applying the random effect negative binomial model to examine traffic accident occurrence at signalized intersections." Accident Analysis and Prevention, Vol. 35, pp. 253-259. https://doi.org/10.1016/S0001-4575(02)00003-9
  4. Ciro, C., Maurizio, G. and Parisi, A. (2007). "A crash-prediction model for multilane roads." Accident Analysis and Prevention, Vol. 39, pp. 657-670. https://doi.org/10.1016/j.aap.2006.10.012
  5. Engel, J. (1984). "Models for response data showing extra-poisson variation." Statistical Neerlandica, Vol. 38, No. 3. pp. 159-167.
  6. Jovanis, P. P. and Chang, H. L. (1986). "Modeling the Relationship of Accidents to Miles Traveled." Transportation Research Record: Journal of the Transportation Research Board, Vol. 1068, pp. 42-51, Transportation Research Board, Washington D.C.
  7. Lawless, J. (1987). "Negative binomial and mixed poisson regression." Canadian Journal of Statistics, Vol. 15, No. 3, pp. 209-225. https://doi.org/10.2307/3314912
  8. Maher, M. (1991). "A new bivariate negative binomial model for accident frequencies." Traffic Engineering and Control, Vol. 32, No. 9, pp. 422-433.
  9. Miaou, S. P. and Lum, H. (1993). "Modeling vehicle accidents and highway at geometric design relationships." Accident Analysis and Prevention Vol. 25, No. 6, pp. 689-709. https://doi.org/10.1016/0001-4575(93)90034-T
  10. Milton, J., Shankar, V. and Mannering, F. (2008). "Highway accident severities and the mixed logit model: an exploratory empirical analysis." Accident Analysis and Prevention, Vol. 40, No. 1, pp. 260-266. https://doi.org/10.1016/j.aap.2007.06.006
  11. Noland, R. B. (2003). "Traffic fatalities and injuries: The effect of changes in infrastructure and other trends." Accident Analysis and Prevention, Vol. 35, pp. 599-611. https://doi.org/10.1016/S0001-4575(02)00040-4
  12. Ogden, K. W. (1997). "The effects of paved shoulders on accidents on rural highways." Accident Analysis and Prevention, Vol. 29, No. 3, pp. 353-362. https://doi.org/10.1016/S0001-4575(97)00001-8
  13. Sarath, C. J. and Nicholas, J. G. (1990). "Estimating truck accident rate and involvements using linear and poisson regression models." Transportation Planning and Technology, Vol. 15, No. 1, pp. 41-58. https://doi.org/10.1080/03081069008717439
  14. Shankar, V. N., Albin, R. B., Milton, J. C. and Mannering, F. L. (1998). "Evaluating median cross-over likelihoods with clustered accident counts: An empirical inquiry using random effects negative binomial model." Transportation Research Record: Journal of the Transportation Research Board, No. 1635, pp. 44-48, Transportation Research Board, Washington D.C.
  15. Train, K. (2003). Discrete choice models with simulation, Cambridge University Press, Cambridge, UK.
  16. Washington, S., Karlaftis, M. and Mannering, F. (2010). Statistical and econometric models for transportation data analysis, Chapman Hall/CRC, Boca Raton, Fla.
  17. Zhang, C. and Ivan, J. N. (2005). "Effects of geometric characteristics on head-on crash incidence on two-lane roads in connecticut." Transportation Research Record : Journal of the Transportation Research Board, Vol. 1908, pp. 159-164, Transportation Research Board, Washington D.C. https://doi.org/10.3141/1908-19

Cited by

  1. A Development of Traffic Accident Models at 4-legged Signalized Intersections using Random Parameter : A Case of Busan Metropolitan City vol.17, pp.6, 2015, https://doi.org/10.7855/IJHE.2015.17.6.065
  2. Development of Accident Frequency Models with Random Parameters on Interstate Roadway Segments with and without Lighting Systems vol.2017, 2017, https://doi.org/10.1155/2017/4740532
  3. Developing an Accident Model for Rural Signalized Intersections Using a Random Parameter Negative Binomial Method vol.33, pp.6, 2015, https://doi.org/10.7470/jkst.2015.33.6.554
  4. A Development of Traffic Accident Model by Random Parameter : Focus on Capital Area and Busan 4-legs Signalized Intersections vol.14, pp.6, 2015, https://doi.org/10.12815/kits.2015.14.6.091
  5. Development of Traffic Accident Models at Rural Signalized Intersections by Day and Night vol.17, pp.3, 2015, https://doi.org/10.7855/IJHE.2015.17.3.107
  6. Random Parameter Negative Binomial Models of Interstate Accident Frequencies on Interchange Segment by Interchange Type/Region vol.16, pp.5, 2014, https://doi.org/10.7855/IJHE.2014.16.5.133
  7. Analysis of Severe Injury Accident Rates on Interstate Highways Using a Random Parameter Tobit Model vol.2017, 2017, https://doi.org/10.1155/2017/7273630
  8. A Development of Traffic Accident Estimation Model by Random Parameter Negative Binomial Model: Focus on Multilane Rural Highway vol.32, pp.6, 2014, https://doi.org/10.7470/jkst.2014.32.6.662
  9. Random Parameter Negative Binomial Model of Signalized Intersections vol.2016, 2016, https://doi.org/10.1155/2016/1436364
  10. A Development of Traffic Accident Prediction Model at Rural Unsignalized Intersections Using Random Parameter vol.16, pp.4, 2017, https://doi.org/10.12815/kits.2017.16.4.64