DOI QR코드

DOI QR Code

토양 서식 미생물을 이용한 자일렌(xylene) 분해특성 조사

The Investigation of Biodegradation Characteristics of Xylene by Soil Inhabited Microorganisms

  • 최필권 (경기대학교 생명공학과) ;
  • 허평 (경기도보건환경연구원 토양분석팀) ;
  • 이상섭 (경기대학교 생명공학과)
  • Choi, Phil-Kweon (Soil Analysis Team, Gyeonggi-do Institute of Health & Environment) ;
  • Heo, Pyeung (Department of Biotechnology, Kyonggi University) ;
  • Lee, Sang-Seob (Soil Analysis Team, Gyeonggi-do Institute of Health & Environment)
  • 투고 : 2011.10.31
  • 심사 : 2013.05.20
  • 발행 : 2013.06.30

초록

본 연구의 목적은 유류로 오염된 토양으로부터 분리된 고효율 분해균주에 의한 xylene 분해특성을 조사하고 분해과정을 밝히는 것이다. P. putida BJ10에 의해 mineral salts medium (MSM)배지내에서 24시간 배양 후 제거율은 o, m, p-xylene 각각 94, 90, 98%였으며 3% 이하의 대조군과 명확한 차이를 보였다. 또한 유류로 오염된 토양내에서의 9일 경과 후 xylene 제거율은 유류 분해균주 주입구에서 66%였으며 무처리 일반토양에서 32%, 멸균 토양에서 8%로서 P. putida BJ10에 의한 유효성을 확인할 수 있었다. 또한 시간경과에 따른 대사산물을 분석한 결과 o-xylene의 분해 경로에서는 6시간 경과 후 3-methylcatechol, 24시간 경과 후 o-toluic acid 가 분해산물로서 검출되어 최종산물로서의 o-toluic acid 가 확인되었으며 중간산물의 변환과정은 기존 발표된 연구들과 다소 다른 결과를 나타내었다.

The purpose of this study is to investigate the biodegradation characteristics of the xylene by BTEX-degrading bacteria, Pseudomonas putida BJ10, isolated from oil-contaminated soil and bio-degradation pathway of the xylene. The removal efficiencies of o, m, p-xylene in mineral salts medium (MSM) by P. putida BJ10 were 94, 90 and 98%, respectively for 24 hours. It shows clear difference compared with the control groups which were below 3%. The removal efficiencies of BTEX by P. putida BJ10 in gasoline-contaminated soil were 66% for 9 days. They were clearly distinguished from the control groups (control and sterilized soil) which were 32 and 8%. 3-methylcatechol and o-toluic acid were detected after 6 and 24 hours during the o-xylene biodegradation pathway. Therefore, we confirmed o-toluic acid as the final metabolite. And intermediate-products were somewhat different with previously published studies of the transformation pathway from o-xylene to 3-methylcatechol.

키워드

참고문헌

  1. Korea Ministry of Environment, "The investigation results of nationwide and local soil monitoring networks in 2006." pp. 1-35(2007).
  2. Hamdi, H., Benzarti, S., Manusadzianas, L., Aoyama, I. and Jedidi, N., "Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions," Soil Biol Biochem., 39, 1926-35(2007). https://doi.org/10.1016/j.soilbio.2007.02.008
  3. Bento, F. M., Camargo, F. A. O. and Okeke, B., "Bioremediation of soil contaminated by diesel oil," Braz. J. Microbiol., 34, 65-68(2003). https://doi.org/10.1590/S1517-83822003000500022
  4. Dockyu Kim, "Funtional Genomic Studies on Alkylbenzene Degradation by Rhodococcus sp. Strain DK17," Yonsei University., 94-110(2003).
  5. Kim, D. Y., Kim, J. W., Jung, G. J., Zylstra, Y. M., Kim, S.-K., and Kim, E., "Regioselective oxidation of xylene isomers by Rhodococcus sp. strainDK17," FEMS Microbiol., 223, 211-214(2003). https://doi.org/10.1016/S0378-1097(03)00379-3
  6. Kim, D., Y.-S. Kim, S.-K. Kim, S. W. Kim, G. J. Zylstra, Y. M. Kim, and E. Kim., "Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17," Appl. Environ. Microbiol. 68, 3270-3278(2002). https://doi.org/10.1128/AEM.68.7.3270-3278.2002
  7. Hudlicky, T., D. Gonzalez, and D. T.Gibson., "Enzymatic dihydroxylation of aromatics in enantioselective synthesis: expanding asymmetric methodology," Aldrichimica Acta., 32, 35-62(1999).
  8. Arenghi, F. L., M. Pinti, E. Galli, and P. Barbieri., "Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxy-genase regulatory gene (touR) and of its cognate promoter," Appl. Environ. Microbiol. 65, 4057-4063(1999).
  9. Bickerdike, S. R., R. A. Holt, and G. M. Stephens., "Evidence for metabolism of o-xylene by simultaneous ring and methyl group oxidation in a new soil isolate," Microbiol., 143, 2321-2329(1997). https://doi.org/10.1099/00221287-143-7-2321
  10. Korea Ministry of Environment, "ES 07601.2 The analysis of benzene, toluene, ethyl benzene and xylene in soil by gas chromatography with purge and trap." The Korea Standard Method for Soil Pollution, pp. 232-238(2009).
  11. U. S. EPA., "Microwave assisted acid digestion of aqueous samples and extracts" Method 3015A, USA, pp.1-25(2007).
  12. Reineke, W., "Microbial degradation of haloaromatic," Ann. Rev. Microbial. 42, 263-287(1988). https://doi.org/10.1146/annurev.mi.42.100188.001403
  13. U. S. EPA., "Bioventing Principles and Practice," U. S. Government Printing Office via GPO Access, USA, 3, 1-9(1994).
  14. Haggblom, M. M., "Microbial breakdown of halogenated aromatic pesticides and ralated compounds," FEMS Microbiol. Rev., 103, 29-72(1992). https://doi.org/10.1111/j.1574-6968.1992.tb05823.x
  15. Gibson, D. T. and subramanian, V., "Microbial degradation of aromatic hydrocarbons," In Microbial Degradation Organic Compounds, Gibson, D. T. (ed.). Marcel Dekker, New York., pp.361-369(1984).
  16. Worsey, M. J. and P. A. Williams. "Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) [sic] mt-2: evidence for a new function of the TOL plasmid," J. Bacteriol. 124, 7-13(1975).