DOI QR코드

DOI QR Code

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites

버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거

  • Eom, Won-Suk (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Lee, Doo-Hee (Department of Energy and Environment, The Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 엄원숙 (서울과학기술대학교 환경공학과) ;
  • 이두희 (서울과학기술대학교 에너지환경대학원 에너지환경공학과) ;
  • 신현상 (서울과학기술대학교 환경공학과)
  • Received : 2013.02.14
  • Accepted : 2013.03.15
  • Published : 2013.04.30

Abstract

In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.

본 연구에서는 페놀계 화합물의 산화-변환 반응매개체로 알려진 버네사이트를 고정화한 알긴산 겔 비드(birnessite entrapped alginate beads, Bir-AB)를 제조하고, 1-naphthol (1-NP)의 제거반응 특성을 회분식 실험을 통하여 조사하였다. SEM (Scanning Electron Microscopy)분석 결과, 버네사이트 입자는 알긴산 겔을 가교로 하여 비드에 고정화됨을 확인하였다. Bir-AB에 의한 1-NP의 제거는 유사일차 속도반응(pseudo-first order kinetic)을 따랐으며, 반응속도상수(k)는 알긴산(AG)에 대한 버네사이트(Bir) 입자의 혼합비(Bir : AG=0.25 : 1~1 : 1 w/w)가 2배 증가할 때마다 약 1.5배씩 증가하였다. Bir-AB에 의한 1-NP 제거는 pH의 영향을 받았으며 pH가 10에서 4로 감소하면서 반응속도 상수(k, $hr^{-1}$)는 0.361에서 0.661로 약 1.8배 증가하였다. 반응상등액에 대한 총유기탄소(TOC) 분석결과 Bir-AB는 버네사이트 분말입자를 사용한 경우에 비교해 상대적으로 높은 용존 유기탄소 제거 효과(74% vs 92%)를 보였으며, 반응 후 분리한 비드에 대한 탈착실험(CH3OH)과 HPLC 크로마토그램 분석 결과로부터 1-NP의 중합체 생성물은 Bir-AB에의 고정화를 통해 수용액으로부터 제거될 수 있음을 확인하였다. 또한, 반응상등액에 대한 원자흡광분석(AAS) 분석결과 반응과정에서 용출되는 Mn이온은 Bir-AB에의 재흡착을 통해 제거되었다. Bir-AB는 간단한 여과를 통해 모두 회수가능하며, 2회 재사용에 따른 1-NP의 제거효율을 평가한 결과, 초기에 비교한 큰 반응성의 감소(제거율<20%) 없이 재사용이 가능한 것으로 나타났다.

Keywords

References

  1. Bollag, J. M., Myers, C., Pal, S. and Huang, P. M. "The role of abiotic and biotic catalysts in the transformation of phenol compounds," In Envirnmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics (P. M. Haung, J. Berthelin, J. M. Boallg, W. B. McGill, A. L. Pake eds.), CRC Press, Boca Raton, FL, pp. 299-310 (1995).
  2. Shindo, H. and Huang, P. M., "Role of Mn (IV) oxide in abiotic formation of humic substances in the environment," Nature (London), 298, 363-365(1982). https://doi.org/10.1038/298363a0
  3. Bollag, J. M., "Decontaminating soil with enzymes: An in situ method using phenolic and anilinic compounds," Environ. Sci. Technol., 26, 1876-1881(1992). https://doi.org/10.1021/es00034a002
  4. Blalk, H. M., Simpson, A. J. and Pedersen, J. A., "Crosscoupling of sulfamide antimicrobial agents with model humic constituents" Environ. Sci. Technol., 39, 4463-4473(2005). https://doi.org/10.1021/es0500916
  5. Kang, K. H., Dec, J., Park, H. and Bollag, J.-M., "Effect of phenolic mediators and humic acid on cyprodinil transformation in presence of birnessite," Water Res., 38(11), 2737- 2745(2004). https://doi.org/10.1016/j.watres.2004.03.018
  6. Choi, C. K., Eom, W. S. and Shin, H. S., "Effect of Phenolic Mediators and Humic Acid on the Removal of 1-Indanone Using Manganese Oxide," J. Kor. Soc. Environ. Eng., 34, 445-453(2012). https://doi.org/10.4491/KSEE.2012.34.7.445
  7. McKenzie, R. M., "The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese," Miner. Mag., 38, 493-502(1971). https://doi.org/10.1180/minmag.1971.038.296.12
  8. Cheney, M. A., Bhowmik, P. K., Qian, S., Joo, S. W., Hou, W. and Okoh, J. M., "A New method of synthesizing black birnessite nanoparticles: From brown to black birnessite with nanostructure," J. Nanomaterials., Volume 2008, Article ID 763706, doi:10.1155/2008/763706.
  9. Harn, Y. N., Choi, C. K. and Shin, H. S., "A Study on the Oxidative Transformation of Quinone Compound using Nanostructured Black-birnessite," J. Kor. Soc. Environ. Eng., 32, 547-554(2010).
  10. Zhang, W. X. "Nanoscale iron particles for environmental remediation: an overview," J. Naniopart. Res., 5, 323-332 (2003). https://doi.org/10.1023/A:1025520116015
  11. Bezbaruah, A. C., Krajangpan, S., Chisholm, B., Khan, E. and Elorza Bermudez, J. J., "Entrapment of iron naonoparticles in calcium alginate beads for groundwater remediation applications," J. Hazard. Mater., 166, 1339-1343 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.054
  12. Krajangpan, S., Jarabek, L., Jepperson, J., Chisholm, B. and Bezbaruah, A. C., "Polymer modified iron nanoparticles for environmental remediation," Polym. Prepr., 49, 921-926 (2008).
  13. Pandey, A. K., pandey, S. D., Misra, V. and Devi, S., "Role of humic acid entrapped calcium alginate bedas in removal of heavy metals," J. Hazard. Mater., B98, 237-241(2003).
  14. Lin, Y. B., Fugetsu, B., Terui, N. and Tanaka, S., "Removal of organic compounds by alginate gel beads," J. Hazard. Mater., B120, 237-241(2005).
  15. Rocher, V., Siaugue, J. M, Cabuil, V. and Bee, A., "Removal of organic dyes by magnetic alginate beads," Water Res., 42, 1290-1298(2008). https://doi.org/10.1016/j.watres.2007.09.024
  16. Bezbaruah, A. N., Krajiangpan, S., Chisholm, B. J., Khan, E. and Elorza Bermudez, J., "Entrapment of iron naonoparticles in calcium alginate beads for groundwater remediation appli cations," J. Hazard. Mater., 166, 1339-1343(2009). https://doi.org/10.1016/j.jhazmat.2008.12.054
  17. Martinsen, A., Skjak-Brak, G. and Smidsrod, O., "Aliginate as immobilization materials: I. Correlation between chemical and physical properties of alginate gel beass," Biotechnol. Bioeng., 33(1), 79-89(1989). https://doi.org/10.1002/bit.260330111
  18. Shin, H. S., Im, D. M., Lee, D. H. and Kang, K. H., "Reaction kinetics and transformation products of 1-naphthol by Mn oxide-mediated oxidative coupling reaction," J. Hazard. Mater., 165, 540-547(2009). https://doi.org/10.1016/j.jhazmat.2008.10.027
  19. Reddy, K. R., Rajgopal, K. and Kantan, M. L., "Copperalginates: a biopolymers supported Cu(II) catalyst for 1,3- dipolar cycloaddition of alkynes with azides and oxidative coupling of 2-naphthols and phenols in water:, Catal. Lett., 114(1-2), 36-40(2007). https://doi.org/10.1007/s10562-007-9032-x
  20. Shindo, H. and Hung, P. M., "Catalytic effect of manganese (IV), rion (III), Al and So oxides on the formation of phenolic polymers," Soil Sci. Soc. Am. J., 48, 927-934(1984). https://doi.org/10.2136/sssaj1984.03615995004800040045x
  21. Odziemkowski, M. S. and Gillham, R. W., "Surface redox reactions on commercial grade granular iron (steel) and their influence on the reductive dechlorination of solvent. Micro Raman Spectroscopic Studies." 213th ACS National Meeting, April 13-17, San Francisco, California(1997).
  22. Xu, F., Koch, D. E., Kong, I. C., Hunter, R. P. and Bhandari, A., "Peroxidase-mediated oxidative coupling of 1-naphthol: Characterization of polymerization products," Water Res., 39, 2358-2368(2005). https://doi.org/10.1016/j.watres.2005.04.010
  23. Jung, J. W., Lee, S., Ryu, H., Kang, K. H. and Nam, K., "Detoxicification of phenol through bound residue formation by birnessite in soil: Transformation kinetics and toxicity," J. Envron. Sci. Health Part A, 43, 255-261(2008). https://doi.org/10.1080/10934520701792746
  24. Salloum, M. J., Dudas, M. J. and McGill, W. B., "Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation," Org. Geochem., 32, 709-719 (2001). https://doi.org/10.1016/S0146-6380(01)00007-9
  25. Karthikeyan, K. G. and Chorover, J., "Effects of solution chemistry on the oxidative transformation of 1-naphthol and its complexation with humic acid," Environ. Sci. Technol, 34, 2939-2946(2000). https://doi.org/10.1021/es991445u
  26. Majcher, E. H., Chorover, J., Bollag, J.-M. and Huang, P. M., "Evolution of $CO_{2}$ during birnessite-induced oxidation of $^{14}C$-labeled catechol," Soil Sci. Soc. Am. J., 64, 157-163 (2000). https://doi.org/10.2136/sssaj2000.641157x