DOI QR코드

DOI QR Code

Expected problems for storytelling mathematics education and some suggestions

스토리텔링 수학수업의 예상되는 문제점과 해결방법의 모색

  • Kim, Yon Mi (Department of Basic Science, Hong Ik University)
  • Received : 2013.09.02
  • Accepted : 2013.11.12
  • Published : 2013.11.30

Abstract

Inspite of many strengthens of storytelling mathematics education, some problems are expected: when math is taught in concrete contexts, students may have trouble to extract concepts, to transfer to noble and abstract contexts, and they may experience inert knowledge problem. Low achieving students are particularly prone to these issues. To solve these problems some suggestions are made by the author. These are analogous encoding and progressive formalism. Using analogous encoding method students can construct concepts and schema more easily and transfer knowledge which shares structural similarity. Progressive formalism is an effective way of introducing concepts progressively moving from concrete contexts to abstract context.

Keywords

References

  1. 교육과학기술부 2009). 2009년 개정 수학과 교육과정(교육과학기술부 고시 제 2009-41호)
  2. 권오남, 박규홍, 이상구, 박제남, 주미경, 신준국, 김영록, 이재성, 장훈, 김지선, 박지현, 박정숙, 오혜미, 김영혜, 박윤근, 박상의, 전철 (2013). 고등학교 스토리텔링 모델 교과서 개발, 한국과학창의재단.(Kwon, O.N., Park, G.H., Lee, S.G., Park, J.N., Joo, M.K., Shin, J.K., Kim, Y.R., Lee, J.S., Jang, H., Kim, J.S., Park, J.H., Park, J.S., Oh, H.M., Kim, Y.H., Park, Y.K., Park S.E., & Jeon, C. (2013). Development of model highschool textbook based on storytelling, Korea foundation for the Advancement of science & creativity.)
  3. 김연미 2013). 수학적 사고에 동원되는 두뇌 영역들과 이의 교육학적 의미, 수학교육, 52(1), 19-42.(Kim, Y.M. (2013). Mathematical thinking, its neural systems and implications for education, The Mathematics Education, 52(1), 19-42.) https://doi.org/10.7468/mathedu.2013.52.1.019
  4. 서보억 (2013). 수학교육에서 스토리텔링에 관한 문헌분석연구, 수학교육, 52(1), 65-82.(Suh, B.E. (2013). A literature research on storytelling in mathematics education, The Mathematical Education 52(1),65-82.)
  5. Barsalou, L & Wiemer-Hastings, K.(2005). Situating abstract concepts. In D. Pecher & R. Zwan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (129-163). Cambridge: Cambridge University Press.
  6. Bernardo, A. (2001). Principle explanation and strategic schema abstraction in problem solving, Memory & Cognition 29(4), 627-633. https://doi.org/10.3758/BF03200463
  7. Boaler, J. (1994). When do girls prefer football to fashion? An analysis of female underachievement in relation to 'realistic' mathematic contexts. British Educational Research Journal 20(5), 551-564. https://doi.org/10.1080/0141192940200504
  8. Boidy, T.(1994). Improving students' transfer of learning among subject areas through the use of an integrated curriculum and alternative assessment, Chicago: Saint Xavier University.
  9. Chi, M. T. H., Feltovich, P. & Glaser, R.(1981). Categorization and representation of physics problems by experts and novices. Cognitive Science 5, 121 -152. https://doi.org/10.1207/s15516709cog0502_2
  10. Conway, A. R. A. & Engle, R. W. (1994). Working memory and retrieval: A resource dependent inhibition model, Journal of Experimental Psychology: General 123(4), 354-373. https://doi.org/10.1037/0096-3445.123.4.354
  11. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.
  12. De Groot(2008). Thought and choice in chess, Amsterdam University Press.
  13. Egan, K.(2005). An imaginative approach to teaching, Chicago: The University of Chicago Press.
  14. Freudenthal, H. (1991). Revisiting Mathematics Education: China Lectures, MA: Kluwer Academic Gentner
  15. Gentner, D. & Smith, L.(2012). Analogical reasoning, In V.S. Ramachandran (Ed.) Encyclopedia of human Behavior, 2nd edition (130-136). Oxford: Elsevier.
  16. Gentner, D., Lowenstein, J. & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding, Journal of Educational Psychology 95(2), 393-408. https://doi.org/10.1037/0022-0663.95.2.393
  17. Goldstone, R. L. & Sakamoto, Y. (2003). The transfer of abstract principles governing complex adaptive systems. Cognitive Psychology 46(4), 414-466. https://doi.org/10.1016/S0010-0285(02)00519-4
  18. Harp, S. F. & Mayer, R. E. (1998). How seductive details do their damage: A theory of cognitive interest in science learning, Journal of Educational Psychology 90(3), 414-434. https://doi.org/10.1037/0022-0663.90.3.414
  19. Hamilton, M. & Weiss, M. (2005). Children tell stories: teaching and using storytelling in the classroom, N.Y. : Richard. C. Owen.
  20. Holyoak, H & Koh, K.(1987). Surface and structural similarity in analogical transfer, Memory and Cognition 15(4), 332-340. https://doi.org/10.3758/BF03197035
  21. Holyoak, K. J. (2012). Analogy and relational reasoning. In K. J. Holyoak & R. G. Morrison(Eds.), The Oxford handbook of thinking and reasoning (234-259). New York: Oxford University Press.
  22. Holyoak, H & Thagard, P. (1997). The analogical mind, American Psychologist 52(1), 35-44. https://doi.org/10.1037/0003-066X.52.1.35
  23. Kaminski, J.A., Sloutsky, V. & Heckler, A.(2008). Transfer of mathematical knowledge: The portability of generic instantiations, Child Development Perspectives 3(3), 151- 155.
  24. Kroger, J., Nystrom, L., Cohen, J, & Johnson-Laird, P. (2008). Distinct neural substrates for deductive and mathematical processing, Brain Research, 1243, 86-103. https://doi.org/10.1016/j.brainres.2008.07.128
  25. Kurtz, K. J., Miao, C., & Gentner, D. (2001). Learning by analogical bootstrapping. Journal of the Learning Sciences 10(4), 417-446. https://doi.org/10.1207/S15327809JLS1004new_2
  26. Lazarus, R. S. (1991). Emotion and adaptation. New York: Oxford University Press.
  27. Lester, F., Garofalo, J., & Kroll, D. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes. Final report to the National Science Foundation of NSF Project, MDR 85-50346.
  28. Mason, R.A, & Just, M,A. (2013) In M. A. Britt, S. R. Goldman, & J. F Rouet (Eds.). Identifying component discourse processes reading from works to multiple texts(147-159). New York: Routledge.
  29. McNamara, Kintsch, Songer & Kintsch, (1996). Are good texts always better? Interactions of text coherence, background knowledge, and level of understanding in learning from text. Cognition and Instruction 14(1), 1-43. https://doi.org/10.1207/s1532690xci1401_1
  30. McNeil, N. M. & Fyfe, E. (2012). Concreteness fading promotes transfer mathematical knowledge, Learnig and Instruction 22(6), 440-448. https://doi.org/10.1016/j.learninstruc.2012.05.001
  31. National Council of Teachers of Mathematics (1991). Professional standards for teaching of Mathematics, VA: NCTM.
  32. OECD. (2010). The Nature of Learning: Using Research to Inspire Practice,(H. Dumont, D. Istance, & F. Benavides (Eds.)
  33. OECD Prat, C & Just, M. (2011). Exploring the neural dynamics underpinning individual differences in sentence comprehension, Cerebral Cortex 21(8), 1747-1760. https://doi.org/10.1093/cercor/bhq241
  34. Richland, L. Stigler, J. Holyoak, K. (2012). Teaching the conceptual structure in mathematics, Educational Psychologist 47(3), 189-230. https://doi.org/10.1080/00461520.2012.667065
  35. Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children's development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology 94(3), 249-271. https://doi.org/10.1016/j.jecp.2006.02.002
  36. Ross, B. H. (1984). Reminding and their effects in learning a cognitive skill, Cognitive Psychology, 16, 371-416. https://doi.org/10.1016/0010-0285(84)90014-8
  37. Sanchez, C. & Wiley, J. (2006). An Examination of seductive details effect in terms of working memory, Memory and Cognition 34(2), 344-355. https://doi.org/10.3758/BF03193412
  38. Schiro, M. (2004). Oral storytelling and teaching mathematics: Pedagogical and multicultural perspectives. Thousand Oaks, CA: Sage.
  39. Sfard, A. (2001). There is more to discourse than meets the ears: looking at thinking as communication to learn more about mathematical learning, Educational Studies in Mathematics 46(1),13-57. https://doi.org/10.1023/A:1014097416157
  40. Shannon, A. (2007), Task context and assesment Mathematics Proficiency, In. A. Schoenfeld(Ed.) Assessing Mathematical Proficiency (177-191). MSRI publications 53.
  41. Silvia, P.J. (2008). Interest: The Curious Emotion, Current Directions in Psychological Science 17(1), 57-70. https://doi.org/10.1111/j.1467-8721.2008.00548.x
  42. Siu, M. K. (2004). "No, I don't use history of mathematics in my class, why?" Proceedings in HPM 2004 & ESU4 2004, 268-277.
  43. Wiest, R. (2001). The role of fantasy contexts in word problems, Mathematics Education. Research Journal 13(2), 74-90.
  44. Willingham, D. (2010). Why don't students like school, San Francisco: Wiley.
  45. Xu, J., Kemeny, S., Park, G., Frattali, C. & Braun, A. (2005). Language in context: emergent features of word, sentence, and narrative comprehension Neuro image, 25(3), 1002-1015.
  46. Zazkis, R., & Liljedahl, P. (2008). Teaching mathematics through storytelling, Thousand Oaks, CA:Sage.