DOI QR코드

DOI QR Code

Saccharification and Fermentation Capability of the Waste from Beer Fermentation Broth

맥주 폐 효모액의 당화 및 에탄올 발효능

  • Kang, MinKyung (Department of Chemical Engineering, Kyungpook National University) ;
  • Kim, Minah (Department of Chemical Engineering, Keimyung University) ;
  • Yu, Bowan (Department of Chemical Engineering, Kyungpook National University) ;
  • Park, Joong Kon (Department of Chemical Engineering, Kyungpook National University)
  • 강민경 (경북대학교 화학공학과) ;
  • 김민아 (계명대학교 화학공학과) ;
  • 유보완 (경북대학교 화학공학과) ;
  • 박중곤 (경북대학교 화학공학과)
  • Received : 2013.08.07
  • Accepted : 2013.09.02
  • Published : 2013.12.01

Abstract

The waste from beer fermentation broth (WBFB) has been found an excellent and inexpensive resource for bioethanol production. We tried to evaluate the saccharification and fermentation capabilities of WBFB to confirm its effectiveness for bioethanol production. The saccharification potentials of the WBFB were evaluated at various temperatures (30, 40, 50, 60 and $70^{\circ}C$). It was found that the saccharification capabilities increased with temperature and highest reached maximum at $60^{\circ}C$ and $70^{\circ}C$ after 4h. Ethanol production from a mixture of WBFB and chemically defined media (CDM) without addition of any microbial species confirmed the fermentation capabilities of WBFB. Simultaneous saccharification and fermentation were performed using WBFB, starch solution and CDM as culturing media. The maximum yield of bioethanol production was obtained at $30^{\circ}C$. The saccharifying enzymes and the yeast cells present in WBFB were essential factors for the production of bioethanol from WBFB without any additional enzymes or microbial cells.

맥주 폐 효모액(waste from beer fermentation broth, WBFB)은 바이오 에탄올 생산을 위한 우수하고 저렴한 원료이다. 본 연구에서는 바이오 에탄올 생산을 위해 WBFB의 당화능과 발효능을 확인하는 실험을 진행하였다. 당화능은 온도를 30, 40, 50, 60, $70^{\circ}C$로 다르게 하여 실험했는데 온도가 올라감에 따라 당화능은 증가하였고 4시간 후 $60^{\circ}C$$70^{\circ}C$에서 많은 양의 glucose가 생산되었다. WBFB와 chemically defined media (CDM) 혼합물에서는 어떠한 미생물의 첨가 없이도 발효가 되어 에탄올이 생산되었다. 동시당화발효능을 30, 40, 50, $60^{\circ}C$의 다양한 온도에서 실험해본 결과 $30^{\circ}C$에서 에탄올이 가장 많이 생산되었다. 또 이 실험은 WBFB, starch 용액 그리고 CDM을 이용하여 수행하였는데 WBFB에 있는 당화 효소와 효모가 어떠한 추가적 미생물 첨가 없이 당화와 발효를 가능케 하는 요인이었다.

Keywords

References

  1. Mei, X., Liu, R., Shen, F. and Wu, H., "Optimization of Fermentation Conditions for the Production of Ethanol from Stalk Juice of Sweet Sorghum by Immobilized Yeast Using Response Surface Methodology," Energy Fuels, 23, 487-491(2009). https://doi.org/10.1021/ef800429u
  2. Prasad, S., Singh, A., Jain, N. and Joshi, H. C., "Ethanol Production from Sweet Sorghum Syrup for Utilization as Automotive Fuel in India," Energy Fuels, 21, 2415-2420(2007). https://doi.org/10.1021/ef060328z
  3. Semelsberger, T. A., Borup, R. L. and Greene, H. L., "Dimethyl Ether (DME) as An Alternative Fuel," J. Power Sources, 156, 497-511(2006). https://doi.org/10.1016/j.jpowsour.2005.05.082
  4. Song, H. S. and Ramkrishna, D., "Issues with Increasing Bioethanol Productivity: A Model Directed Study," Korean J. Chem. Eng., 27(2), 576-586(2010). https://doi.org/10.1007/s11814-010-0101-2
  5. Ha, J. H., Gang, M. K., Khan, T. and Park, J. K., "Evaluation of Sediments of the Waste from Beer Fermentation Broth for Bioethanol Production," Korean J. Chem. Eng., 29(9), 1224-1231(2012). https://doi.org/10.1007/s11814-011-0293-0
  6. Ha, J. H., Shah, N., Ul-Islam, M. and Park, J. K., "Potential of the Waste from Beer Fermentation Broth for Bio-ethanol Production Without Any Additional Enzyme, Microbial Cells and Carbohydrates," Enzyme Microb. Technol., 49, 298-304(2011). https://doi.org/10.1016/j.enzmictec.2011.04.016
  7. Han, M., Kim, Y., Kim, Y., Chung, B. and Choi, G. W., "Bioethanol Production from Optimized Pretreatment of Cassava Stem," Korean J. Chem. Eng., 28(1), 119-25 (2011). https://doi.org/10.1007/s11814-010-0330-4
  8. Akpan, U. G., Alhakim, A. A. and Ijah, U. J. J., "Production of Ethanol Fuel from Organic and Food Wastes," Leonardo Electronic Journal of Practices and Technologies, 7, 1-11(2008).
  9. Asrar, G. R., America's farms: Growing food, fiber, fuel - and more, Agricultural Research, 55, 2(2007).
  10. Ha, J. H., Shehzad, O., Khan, S., Lee, S. and Park, J. K., "Production of Bacterial Cellulose by a Static Cultivation Using the Waste from Beer Culture Broth," Korean J. Chem. Eng., 25(4), 812-815(2008). https://doi.org/10.1007/s11814-008-0134-y
  11. Kim, S. H., Yoo, Y. D., Kang, K. H. and Park, J. W., "Simulation Study of Bioethanol Production Process from the By-Product of Beer Fermentation," Journal of Energy & Climate Change, 4, 20-27(2009).
  12. Khan, T., Hyun, S. H. and Park, J. K., "Production of Glucuronan Oligosaccharides Using the Waste of Beer Fermentation Broth as a Basal Medium," Enzyme MicrobTechnol, 42, 89-92(2007). https://doi.org/10.1016/j.enzmictec.2007.08.007
  13. Khattak, W. A., Kang, M. K., Ul-Islam, M. and Park, J. K., "Partial Purification of Saccharifying and Cell Wall Hydrolyzing Enzymes from Malt in Waste from Beer Fermentation Broth," Bioprocess. Biosyst. Eng., 36, 737-747(2013). https://doi.org/10.1007/s00449-013-0899-1
  14. Khattak, W. A., Khan, T., Ha, J. H., Ul-Islam, M., Kang, M. K. and Park, J. K., "Enhanced Production of Bioethanol from Waste of Beer Fermentationbroth At High Temperature Through Consecutive Batch Strategy by Simultaneous Saccharification and Fermentation," Enzyme Microb. Technol., 53, 322-330(2013). https://doi.org/10.1016/j.enzmictec.2013.07.004
  15. Balata, M., Balata, H. and Cahide, O., "Progress in Bioethanol Processing," Prog. Energy Combust. Sci., 34, 551-73(2008). https://doi.org/10.1016/j.pecs.2007.11.001
  16. Baras, J., Gae, S. and Pejin, D., Chem. Ind., 56, 89-105(2002). https://doi.org/10.2298/HEMIND0203089B
  17. HID Global Co., Optimizing Efficiency, Economy, and Traceability in Waste Management, Technology Basics White Paper(2009).
  18. Kim, S. D. and Dale, B. E., "Global Potential Bioethanol Production from Wasted Crops and Crop Residues," Biomass Bioenerg., 26, 361-375(2004). https://doi.org/10.1016/j.biombioe.2003.08.002
  19. Chio, G. W., Moon, S. K., Kang, H. W., Min, J. H., Chung, B. W. J. and Choi, G. W., "Simultaneous Saccharification and Fermentation of Sludge-containing Cassava Mash for Batch and Repeated Batch Production of Bioethanol by Saccharomyces Cerevisiae CHFY0321," J. Chem. Technol. Biotechnol., 84, 547-553(2009). https://doi.org/10.1002/jctb.2077
  20. Hammond, J. B., Egg, R., Diggins, D. and Coble, C. G., "Alcohol from Bananas," Bioresour. Technol., 56, 125-130(1996). https://doi.org/10.1016/0960-8524(95)00177-8
  21. Khattak, M., Ul-Islam, Park, J. K., "Prospects of Reusable Endogenous Hydrolyzing Enzymes in Bioethanol Production by Simultaneous Saccharification and Fermentation," Korean J. Chem. Eng., 29(11), 1467-1682(2012). https://doi.org/10.1007/s11814-012-0174-1
  22. Kim, S. H., Yu, Y.D., Kang, K. H. and Park, J. W., "Simulation Study of Bioethanol Production Process from the By-product of Beer Fermentation," Journal of Energy & Climate Change, 4(1), 20-27(2009).
  23. Na, J. B. and Kim, J. S., "The Optimum Condition of SSF to Ethanol Production from Starch Biomass," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46, 858-862(2008).

Cited by

  1. 동시당화발효공정을 위한 바이오캡슐 형성 vol.45, pp.2, 2017, https://doi.org/10.4014/mbl.1702.02004