DOI QR코드

DOI QR Code

Bioethanol Production from Eucheuma spinosum using Various Yeasts

Eucheuma spinosum으로부터 다양한 효모를 이용한 바이오에탄올 생산

  • Kim, Min-Ji (Department of Biotechnology, Pukyong National University) ;
  • Kim, Jung-Soo (Department of Biotechnology, Pukyong National University) ;
  • Ra, Chae Hun (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • 김민지 (부경대학교 수산과학대학 생물공학과) ;
  • 김정수 (부경대학교 수산과학대학 생물공학과) ;
  • 라채훈 (부경대학교 수산과학대학 생물공학과) ;
  • 김성구 (부경대학교 수산과학대학 생물공학과)
  • Received : 2013.07.05
  • Accepted : 2013.09.23
  • Published : 2013.10.30

Abstract

Ethanol fermentations were performed using separate hydrolysis and fermentation (SHF) processes with monosaccharides from pretreated seaweed, Eucheuma spinosum as the biomass. The pretreatment was carried out with 11% (w/v) seaweed slurry and 150 mM $H_2SO_4$ at $121^{\circ}C$ for 40 min. Enzyme hydrolysis after $H_2SO_4$ pretreatment was performed with Celluclast 1.5 L at $45^{\circ}C$ for 24 h. Five % active charcoal were added to hydrolysate to removed 5-hydroxy methylfurfural. Ethanol fermentation with 11% (w/v) seaweed hydrolysate was performed for 72~96 h using Kluyvermyces marxianus, Pichia stipits, Saccharomyces cervisiae and Candida tropicalis. Ethanol concentration was reached to 18 g/L by K. marxianus, 16 g/L by P. stipitis, 15 g/L by S. cerevisiae and 10 g/L by C. tropicalis, respectively. The ethanol yield from total monosugar was obtained 0.50 and ethanol productivity was obtained 0.38 g/L/h by K. marxianus.

Keywords

References

  1. Lee, S. M., I. S. Choi, S. K. Kim, and J. H. Lee (2009) Production of bio-ethanol from brown algae by enzymic hydrolysis. KSBB. 24: 483-488.
  2. Yazdani, S. S. and R. Gonzalez (2007) Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr. Opin. Biotech. 18: 213-219 https://doi.org/10.1016/j.copbio.2007.05.002
  3. Cazetta, M. L., M. A. P. C. Celligoi, J. B. Buzato, and I. S. Scarmino (2007) Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresour. Technol. 98: 2824-2828. https://doi.org/10.1016/j.biortech.2006.08.026
  4. Won, K. (2010) Optimization of dilute acid pretreatment of barley straw for bioethanol production, M.S. Thesis. Dankuk University, Yongin, Korea.
  5. Do, J. H. (1997) Extraction and purification of agar from Gelidium amansii. Kor J Fish Aquatic Sci. 30: 423-427.
  6. Meinita, M. D. N., J. Y. Kang, G.T. Jeong, H. M. Koo, S. M. Park, and Y. K. Hong (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24: 857-862. https://doi.org/10.1007/s10811-011-9705-0
  7. Duckwowrth, M. and W. Yaphe (1971) Structure of ahar. I. Fraction of a complex mixture of polysaccharides. Carbo. Res. 16: 198-197.
  8. Seok, J. H., H. G. Park, S. H. Lee, S. W. Nam, S. J. Jeon, J. H. Kim, and Y. H. Kim (2010) High-level secretory expression of recombinant $\beta$-agarose from Zobellia galactanivorans in Pichia pastoris. Kor. J. Microbiol. Biotechnol. 38: 40-45.
  9. Tan, I. S., M. K. Lam, and K. T. Lee (2013) Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydrate. Polymers. 94: 561-566. https://doi.org/10.1016/j.carbpol.2013.01.042
  10. Kim, Y. N., Y. K. Jeong, M. C. Kim, S. B. Kim, Y. K. Chang, W. J. Chi, S. K. Hong, and C. J. Kim (2012) Isolation and identification of agarose-degrading bacterium, Pseudoalteromonas sp. GNUM 08122. Korean J. Microbiol. Biotechnol. 40: 1-9 https://doi.org/10.4014/kjmb.1112.12002
  11. Cho, Y. K., H. J. Kim, and S. K. Kim (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess. Biosyst. Eng. 36: 713-719. https://doi.org/10.1007/s00449-013-0895-5
  12. Amaya-Delgado, L., E. J. Herrera-Lopez, J. Arrizon, M. Arellano-Plaza, A. Gschaedler (2013) Performance evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces cerevisiae in industrial tequila fermentation. World J. Microbiol. Biotechnol. 29: 875-881. https://doi.org/10.1007/s11274-012-1242-8
  13. Fonseca, G. G., E. Heinzle, C. Wittmann, and A. K. Gombert (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354. https://doi.org/10.1007/s00253-008-1458-6
  14. Pang, Z. W., J. J. Liang, X. J. Qin, J.R. Wang, J. X. Feng, and R. B. Huang (2010) Multiple induced mutagenesis for improvement of ethanol production by Kluyveromyces marxianus. Biotechnol. Lett. 32: 1847-1851. https://doi.org/10.1007/s10529-010-0384-8

Cited by

  1. Evaluation of ethanol production and bioadsorption of heavy metals by various red seaweeds vol.39, pp.6, 2016, https://doi.org/10.1007/s00449-016-1571-3
  2. Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산 vol.58, pp.2, 2013, https://doi.org/10.9713/kcer.2020.58.2.293