References
- M. Bohner and A. Peterson, Dynamic Equations on Time scales, An Introduction with Applications, Birkhauser, Boston, 2001.
- M. Bohner and A. Peterson, Advances in Dynamic Equations on Time scales, Birkhauser, Boston, 2003.
-
S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential system via
$t_{\infty}$ -similarity, Bull. Korean Math. Soc. 34 (1997), 371-383. - S. K. Choi, N. J. Koo, and D. M. Im, h-stability for linear dynamic equations on time scales, J. Math. Anal. Appl. 324 (2006), 707-720. https://doi.org/10.1016/j.jmaa.2005.12.046
- S. K. Choi, Y. H. Cui, and N. J. Koo, Lyapunov functions for nonlinear difference equations, J. Chungcheng Math. Soc. 24 (2011), 883-893.
- Christian Potzsche, Chain rule and invariance principle on emasure chains, J. Comput. Appl. Math. 141 (2002), 249-254. https://doi.org/10.1016/S0377-0427(01)00450-2
- J. J. DaCunha, Stability for time varying linear dynamic systems on time scales, J. Comput. Appl. Math. 176 (2005), 381-410. https://doi.org/10.1016/j.cam.2004.07.026
- B. M. Garay, Embeddability of time scale dynamics in ODE dynamics, Nonlinear Anal. 47 (2001), 1357-1371. https://doi.org/10.1016/S0362-546X(01)00271-1
- S. Hilger, Ein Mafikettenkalkul mit Anwendung auf Zentrumsmannig-faltigkeiten. Ph. D. thesis, Universitat Wurzburg, 1988.
- A. C. Peterson and Y. N. Raffoul Exponential stability of dynamic equations on time scales, Adv. Difference Equ. 2 (2005), 133-144.
- A. C. Peterson and C. C. Tisdell, Boundedness and uniqueness of solutions to dynamic equations on time scales, J. Difference Equ. Appl. 10 (2004), 1295-1306. https://doi.org/10.1080/10236190410001652793
- M. Pinto, Perturbations of asymtotically stable differential systems, Analysis 4 (1984), 161-175.
- M. Pinto, Integral inequalities of Bihari-type and applications, Funckcial. Ekvac. 33 (1990), 387-403.
- Y. N. Raffoul, Boundedness in nonlinear differential equations, Nonlinear Stud. 10 (2003), 343-350.