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BOUNDEDNESS IN DYNAMIC EQUATIONS ON TIME
SCALES

Yinhua Cui*

Abstract. We study boundedness of solutions of dynamic equa-
tions on time scales by using Lyapunov-type functions.

1. Introduction

The qualitative theory for differential equations was begun by H.
Poincaré(1881) and A. M. Lyapunov (1892). It is well known that Lya-
punov direct method plays the key role in the stability study of dynam-
ical systems. Historically, Lyapunov presented four celebrated original
theorems on stability, asymptotic stability and instability, which are
now called the principal theorems of stability which are fundamental to
stability of dynamical systems.

In this paper we study the boundedness of the zero solution of the
first order vector dynamic equation

(1.1)
{

x∆ = f(t, x), t ∈ T,
x(t0) = x0, t0 ∈ T, x0 ∈ Rn,

where t > t0 and f : T× Rn → Rn is an rd-continuous function.
Recently Peterson and Tisdell [11] used Lyapunov-type functions to

prove that the solution of Eqs.(1.1) is uniformly bounded. Also, Peter-
son and Raffoul [10] investigated exponential stability of the solution
of Eqs.(1.1). Choi et al.[4] studied the h-stability for linear dynamic
systems on time scales.

If T = R, then x∆ = x′ and (1.1) is the following initial value problem
for ordinary differential equations

(1.2)
{

x′ = f(t, x)
x(t0) = x0.
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If T = Z, then x∆ = ∆x, and (1.1) is the following initial value
problem for ordinary difference equations

(1.3)
{

x(n + 1)− x(n) = f(n, x(n)), n ≥ 0,
x(n0) = x0, n0 ≥ 0.

2. Preliminaries

In 1988 Stefan Hilger introduced the concept of the time scale cal-
culus in his Ph.D. dissertation [9] as a mean to unify continuous and
discrete analysis. Many results one encounters in the study of both dif-
ferential and difference equations have analogs in the time scale case.
However, the time scale result encompasses both the discrete and con-
tinuous results as special cases.

The following definitions and theorems can be found in books by
Bohner and Peterson [1, 2] and DaCunha’s paper [7].

Definition 2.1. A time scale T is any nonempty closed subset of R.

Definition 2.2. The forward jump operator σ(t), and the backward
jump operator ρ(t), are defined by

σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t},
respectively.

Definition 2.3. An element t ∈ T is left-dense, right-dense, left-
scattered, right-scattered, if

ρ(t) = t, σ(t) = t, ρ(t) < t, σ(t) > t,

respectively.

Definition 2.4. The mapping µ : T→ R+ defined by µ(t) = σ(t)− t
is called graininess function.

If T = R, then µ(t) = 0 and when T = Z, we have µ(t) = 1.
Tk = T − {m} when T has a left-scattered maximum m, and Tk = T
otherwise.

Definition 2.5. Let f : T → Rn, f is called differentiable at t ∈
Tk with (delta) derivative f∆(t) ∈ Rn, if given ε > 0 there exists a
neighborhood U of t such that for all s ∈ U

|fσ
i (t)− fi(s)− f∆

i (t)[σ(t)− s]| ≤ ε|σ(t)− s|,
where fi : T→ R, i = 1, 2, · · · , n.
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If T = Z, then f∆(t) = f(t + 1)− f(t).

Theorem 2.6. Suppose f : T→ Rn and let t ∈ Tk.

(i) If f is delta differentiable at t, then f is continuous at t;
(ii) If f is continuous at t and t is right-scattered, then f is delta

differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If f is delta differentiable at t and t is right-dense, then

f∆(t) = lim
s→t

f(t)− f(s)
t− s

.

(iv) If f is delta differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).

Again we consider the two cases T = R and T = Z.

(i) If T = R, Theorem 2.6 (iii) yields that f : R → Rn is delta
differentiable at t ∈ R iff

f
′
(t) = lim

s→t

f(t)− f(s)
t− s

exists, i.e., iff f is differentiable (in the ordinary sense) at t.
In this case we then have

f∆(t) = lim
s→t

f(t)− f(s)
t− s

= f
′
(t).

(ii) If T = Z, Theorem 2.6 (ii) yields that f : Z → Rn is delta differ-
entiable at t ∈ Z with

f∆(t) =
f(σ(t))− f(t)

µ(t)
=

f(t + 1)− f(t)
1

= f(t + 1)− f(t) = ∆f(t),

where ∆ is the usual forward difference operator defined by the
last equation above.

Definition 2.7. The function f : T → Rn is said to be right-dense
continuous if

(i) f is continuous at every right-dense point t ∈ T, and
(ii) lims→t− f(s) exists and is finite at every left-dense point t ∈ T.

The set of rd-continuous functions f : T→ Rn will be denoted in this
paper by Crd(T,Rn).
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Definition 2.8. The mapping p : T→ R is said to be regressive if

1 + µ(t)p(t) 6= 0, t ∈ Tk,

The set of all regressive and rd-continuous functions is denoted byR(T,R).

For p ∈ R(T,R), we define the exponential function by

ep(t, s) = exp[
∫ t

s
ξµ(τ)(p(τ))∆τ ], s, t ∈ T,

where the cylinder transformation ξµ(τ)(p(τ)) = 1
µ(τ)Log(1 + µ(τ)p(τ)).

Theorem 2.9. If p, q ∈ R, then we have, for all t, s, r ∈ T
(i) e0(t, s) = 1 and ep(t, t) = 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) 1

ep(t,s) = eªp(t, s) and ep(t, s) = 1
ep(s,t) = eªp(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t, s)eq(t, s) = ep⊕q(t, s) and

ep(t,s)
eq(t,s) = epªq(t, s).

Theorem 2.10. Assume that f, g : T → R are differentiable at t ∈
Tκ. Then:

(i)The sum f + g is differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

(ii) For any constant α, αf is differentiable at t with

(αf)∆(t) = αf∆(t).

(iii) The product fg : T→ R are differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).

Definition 2.11. Let f ∈ Crd(T,Rn)., Then g : T → Rn is called
antiderivative of f on T, if it is differentiable on T and satisfies g∆ = f(t)
for t ∈ T. In this case, we define

∫ t

a
f(s)∆s = g(t)− g(a), a 6 t and t ∈ T.

Theorem 2.12. (Chain Rule). Let f : R→ R be continuously differ-
entiable and suppose g : T→ R is delta differentiable. Then f◦g : T→ R
is delta differentiable and the formula

(f ◦ g)∆(t) = {
∫ 1

0
f ′(g(t) + hµ(t)g∆(t))dh}g∆(t)
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holds.

Let T0 := {t ∈ T : t ≥ t0}. Assume V : T0 × Rn → R+ is delta
differentiable in variable t and continuously differentiable in variable x,
and x(t) is any solution of dynamic system (1.1)., Then from [6, 8] we
know the delta derivative along x(t) for V (t, x) is the following

V ∆(t, x) = V ∆(t, x(t))

= V ∆
t (t, x(σ(t))) +

∫ 1

0
V ′

x(t, x(t) + hµ(t)x∆(t))dhx∆(t)

= V ∆
t (t, x(σ(t))) +

∫ 1

0
V ′

x(t, x(t) + hµ(t)x∆(t))dhf(t, x),

where V ∆
t is considered as the delta derivative in the first variable t and

V ′
x is taken as the normal derivative in variable x. Then we call V (t, x)

a Lyapunov-type function on time scales.

3. Boundedness in dynamic equations on time scales.

In this section we investigate the boundedness of solution to first-
order dynamic equations on time scales.

Definition 3.1. We say that a solution of (1.1) is bounded if there
exists a constant C(t0, x0) such that

‖x‖ ≤ C(t0, x0) for t ∈ T0.

where C is a constant and depends on t0. Moreover, solutions of (1.1)
are uniformly bounded if C is independent of t0.

Theorem 3.2. [11] Assume that D ⊂ Rn and there exists a Lyapunov
function V : T0 ×D → R+ such that for all (t, x) ∈ T0 ×D :

V (t, x) →∞ as ‖x‖ → ∞;

V (t, x) ≤ λ2‖x‖q;

V ∆(t, x) ≤ −λ3‖x‖r + L

1 + Mµ(t)
;

V (t, x)− V r/q(x) ≤ γ;

where λ2, λ3, q, r are positive constants; L and γ are nonnegative con-

stants, and M := λ3/λ
r/q
2 . Then all solutions of Eq.(1.1) that stay in D

are uniformly bounded.
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Theorem 3.3. [11] Assume that D ⊂ Rn and there exist a Lyapunov
function V : T0 ×D → R+ such that for all (t, x) ∈ T0 ×D :

(3.1) V (t, x) →∞ as ‖x‖ → ∞;

(3.2) V ∆(t, x) ≤ −λ3V (t, x) + L

1 + λ3µ(t)
;

where λ3 > 0 and L ≥ 0 are constants. Then all solutions of Eq.(1.1)
that stay in D are uniformly bounded.

Next, we give more generalized boundedness theorems.

Theorem 3.4. Assume D ⊂ Rn contains the origin and there exist
a Lyapunov-type function V : T0 ×D → R+ and h : T → R+ that h(t)
satisfies bounded and h∆(t)

h(t) is regressive. Furthermore, suppose that

(3.3) a‖x‖p ≤ V (t, x),

(3.4) V ∆(t, x) ≤ −V (t, x) + L

h(t) + µ(t)h∆(t)
h∆(t),

where a and p are positive constants, L is a nonnegative constant. Then
all solutions of Eq.(1.1) that stay in D satisfy

(3.5) ‖x‖ ≤ (
L + (V (t0, x0) + L)h(t0)

h(t)

a
)1/p.

Proof. Let x be a solution of (1.1) that stay in D for all t ∈ T0.
Consider

[V (t, x)h(t)]∆

= V ∆(t, x)h(σ(t)) + V (t, x)h∆(t)

≤ −V (t, x) + L

h(t) + µ(t)h∆(t)
h∆(t)(h(t) + µ(t)h∆(t)) + V (t, x)h∆(t)

≤ Lh∆(t)

Integrating both sides from t0 to t with x0 = x(t0), we obtain

V (t, x)h(t) ≤ Lh(t) + (V (t0, x0) + L)h(t0)

V (t, x) ≤ L + (V (t0, x0) + L)
h(t0)
h(t)

, by (3.3)

‖x‖ ≤ (
L + (V (t0, x0) + L)h(t0)

h(t)

a
)1/p.(3.6)
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Corollary 3.5. Assume that the conditions of Theorem 3.4 hold.
Let L=0, 1/h(t) bounded and

(3.7) V (t, x) ≤ b‖x‖p.

Then by (3.5) and (3.7) we have

‖x‖ ≤ (
L + (b‖x0‖p + L)h(t0)

h(t)

a
)1/p

‖x‖ ≤ (
(b‖x0‖p)h(t0)

h(t)

a
)1/p.(3.8)

Hence we obtain

‖x‖ ≤ c‖x0‖H(t)H(t0)−1, t ≥ t0

where H(t) = (1/h(t))1/p, c = ( b
a)1/p.

Next we will give special case of Theorem 3.4.

If we set T = N(n0) = {n0, n0 + 1, · · ·n0 + k, · · · }, then Theorem 3.4
also holds.

Corollary 3.6. Assume D ⊂ Rn contains the origin and there exist
a Lyapunov-type function V : N(n0)×D → R+ and h : N(n0) → R+ that

h(n) satisfies bounded and ∆h(n)
h(n) is regressive. Furthermore, suppose

that

(3.9) a‖x‖p ≤ V (n, x),

(3.10) V ∆(n, x) ≤ −V (n, x) + L

h(n) + ∆h(n)
∆h(n),

where a and p are positive constants, L is a nonnegative constant. Then
all solutions of (1.3) that stay in D satisfy

(3.11) ‖x‖ ≤ (
L + (V (n0, x0) + L)h(n0)

h(n)

a
)1/p.

Corollary 3.7. Assume that the conditions of Corollary 3.6 hold.
Let L=0, 1/h(n) bounded and

(3.12) V (n, x) ≤ b‖x‖p.
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Then by (3.11) and (3.12) we have

‖x‖ ≤ (
L + (b‖x0‖p + L)h(n0)

h(n)

a
)1/p

‖x‖ ≤ (
(b‖x0‖p)h(n0)

h(n)

a
)1/p.(3.13)

Hence we obtain

‖x‖ ≤ c‖x0‖H(n)H(n0)−1, n ≥ n0,

where H(n) = (1/h(n))1/p, c = ( b
a)1/p.

4. Examples

Example 4.1. Consider the following system of IVP for t ≥ t0 ≥ 0

(4.1)





x∆
1 = −ax1 + ax2,

x∆
2 = −ax1 − ax2,

(x1(t0), x2(t0)) = (c, d).

where a > 0, c and d are certain constants. If there is a bounded function
h : T→ (0,∞) such that for all a ∈ R+

h∆(t)
h(t) + h∆(t)µ(t)

≤ 2a(1− aµ(t)),(4.2)

then all solutions to Eq.(4.1) satisfy (3.5).

Proof. We will show that, under the above assumptions, the condi-
tions of Theorem 3.4 are satisfied. Choose D = R2 and V (x) = x2

1 + x2
2.

V̇ (t, x) = 2x · f(t, x) + µ(t)‖f(t, x)‖2

= −2a(1− aµ(t))‖x‖2

≤ − h∆(t)
h(t) + h∆(t)µ(t)

‖x‖2

=
−V (t, x)

h(t) + h∆(t)µ(t)
h∆(t).

Hence Eq. (3.5) holds under the above assumptions with L = 0. There-
fore all the conditions of Theorem 3.4 are satisfied and we conclude that
all solutions to Eqs.(4.1) satisfy (3.5).
In fact, if there is a constant K such that

0 ≤ aµ(t) ≤ K < 1(4.3)
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for all t ∈ [0,∞), then Eq.(4.2) holds.

Remark 4.2.
Case 1: If T = R then µ(t) = 0 and Eq.(4.3) will hold for any 0 ≤ K < 1
which, in turn, will make Eq.(4.2) hold and we conclude that all solutions
satisfy (3.5).
Case 2: If T = {Hn}∞0 defined by

H0 = 0, Hn =
n∑

r=1

1/r, n ∈ N,

then µ(t) = 1/(n+1) and Eq. (4.3) will hold when a < 1 which, in turn,
will make Eq.(4.2) hold and we conclude that all solutions satisfy (3.5).
Case 3: If T = pN0 then µ(t) = p and Eq.(4.3) will hold when ap < 1
which, in turn, will make Eq.(4.2) hold and we conclude that all solutions
satisfy (3.5).
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