DOI QR코드

DOI QR Code

Improved MOG Algorithm for Periodic Background

주기성 배경을 위한 개선된 MOG 알고리즘

  • Jeong, Yong-Seok (Department of Image Science & Engineering, Pukyong National University) ;
  • Oh, Jeong-Su (Department of Image Science & Engineering, Pukyong National University)
  • Received : 2013.06.03
  • Accepted : 2013.07.22
  • Published : 2013.10.31

Abstract

In a conventional MOG algorithm, a small threshold for background decision causes the background recognition delay in a periodic background and a large threshold makes it recognize passing objects as background in a stationary background. This paper proposes the improved MOG algorithm using adaptive threshold. The proposed algorithm estimates changes of weight in the dominant model of the MOG algorithm both in the short and long terms, classifies backgrounds into the stationary and periodic ones, and assigns proper thresholds to them. The simulation results show that the proposed algorithm decreases the maximum number of frame in background recognition delay from 137 to 4 in the periodic background keeping the equal performance with the conventional algorithm in the stationary background.

기존 MOG (Mixture of Gaussian) 알고리즘에서 배경 결정을 위한 작은 임계치는 주기적인 배경에서 배경 인식 지연을 발생시키고, 큰 임계치는 고정 배경에서 지나가는 객체를 배경으로 인식하게 한다. 본 논문은 적응적인 임계치를 이용한 개선된 MOG 알고리즘을 제안한다. 제안된 알고리즘은 MOG 알고리즘의 주도적인 배경 모델에서 가중치 변화를 단 장기적으로 평가하고, 배경을 정적 배경과 주기성 배경으로 분류하여 그들에 적절한 임계치를 설정한다. 실험결과들은 제안된 알고리즘이 정적 배경에서 기존 알고리즘과 등등한 성능을 유지하면서 주기성 배경에서 배경인식 지연의 최대 프레임수를 137에서 4로 줄여주는 것을 보여주고 있다.

Keywords

References

  1. R. Cucchiara, C. Grana, A. Prati, G. Tardini and R. Vezzani, "Using computer vision techniques for dangerous situation detection in domotics applications," Proc. of IEE IDSS, pp 1-5, 2004.
  2. D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, "A Real-Time Computer Vision System for Measuring Traffic Parameters," Proc. of IEEE CVPR, pp. 495-502, 1997.
  3. M. Valera and S. A. Velastin, "Intelligent distributed surveillance systems: A review," Proc. of IEE VISP, vol. 152, no. 2, pp. 192-204, Apr. 2005.
  4. B.P.L. Lo and S.A. Velastin, "Automatic Congestion Detection System for Underground Platforms," Proc. of IMVSP, pp. 158-161, 2001.
  5. R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, "Detecting Moving Objects, Ghosts, and Shadows in Video Streams," IEEE Trans. on PAMI, vol. 25, no. 10, 2003.
  6. C. Stauffer, and W. Grimson, "Learning Patterns of Activity Using Real-time Tracking," IEEE Trans on PAMI, vol. 22, no. 8, Aug. 2000.
  7. A. Mittal, and N. Paragios. "Motion-based Background Subtraction Using Adaptive Kernel Density Estimation." Proc. of IEEE CVPR, vol. 2 pp. 302-309, 2004.
  8. P.W. Power and J.A. Schoonees, "Understanding background mixture models for foreground segmentation," Proc. of image and vision computing, vol. 2002, pp. 267- 271, 2002.