DOI QR코드

DOI QR Code

Shifted Linear Interpolation with an Image-Dependent Parameter

영상에 종속적인 매개변수를 갖는 이동 선형 보간법

  • Park, Do-Young (Department of Computer Engineering, Sangmyung University) ;
  • Yoo, Hoon (Department of Digital Media, Sangmyung University)
  • Received : 2013.06.05
  • Accepted : 2013.06.27
  • Published : 2013.10.31

Abstract

This paper presents an shifted linear interpolation method with an image-dependent parameter. The previous shifted linear interpolation proposed the optimal shift parameter of 0.21, which is calculated by spectrum analysis of the shifted linear interpolation kernel. However, the parameter can be different if we takes an input image spectrum into account. Thus, we introduce an image-dependent parameter. An experiment shows the best shift parameter is 0.19 in average for real images. Also, simulation results indicate the proposed method is superior to the existing shifted linear interpolation as well as conventional methods such as linear interpolation and cubic convolution interpolation in terms of the subjective and objective image quality.

본 논문은 이동 선형 보간법에서 영상에 종속적인 이동 매개변수를 제안한다. 기존의 이동 선형 보간법에서는 최적 이동 매개변수 값을 0.21로 제시하였다. 이는 이동된 선형 보간 커널의 스펙트럼 해석에 의해서 얻어진 것이다. 하지만, 이동된 보간 커널의 스펙트럼 뿐 만 아니라 입력 영상의 스펙트럼을 반영하면 최적 이동 매개변수 값이 달라질 수 있다. 따라서 본 논문에서는 영상에 종속적인 이동 매개변수를 도입하였다. 실제 예제 영상을 이용하여 평균적으로 최적인 이동 매개변수 값은 0.19로 확인되었다. 실험결과는 제안된 방법이 기존의 방법들인 선형 보간법, 3차 컨볼루션 보간법, 이동선형보간법과 비교하여 주관적으로나 객관적으로 우수하다는 것을 보였다.

Keywords

References

  1. I. N. Bankman, Handbook of medical imaging, processing and analysis, academic new york, pp. 393-420, 2000.
  2. E. Meijering, "A chronology of interpolation: from ancient astronomy to modern signal and image processing," IEEE Trans. Image Processing. Vol. 90, No. 3, pp. 319-342, Mar. 2002.
  3. L. Chang and Y. P. Tang, "Effective use of spatial and spectral correlations for color filter array demosaicking," IEEE Trans. on Consumer Electronics, Vol. 50, No. 1, pp. 355-365, May. 2004. https://doi.org/10.1109/TCE.2004.1277885
  4. R. G. Keys, "Cubic convolution interpolation for digital image processing," IEEE Trans. Acoust. Speech. Signal Process. Vol. 29, pp. 1153-1160, Dec. 1981. https://doi.org/10.1109/TASSP.1981.1163711
  5. T. Blu, P. Thevenaz, and M. Unser, "Linear interpolation revitalized," IEEE Trans. Image Processing. Vol. 13, No. 5, pp. 710-719, May. 2004. https://doi.org/10.1109/TIP.2004.826093
  6. H. C. Chen, W. J. Wang, "Fuzzy-adapted linear interpolation algorithm for image zooming," Signal Processing, Vol. 89, No. 12, pp. 2490-2502, Dec. 2009. https://doi.org/10.1016/j.sigpro.2009.04.016
  7. G. Ramponi, "Warped distance for space- variant linear image interpolation," IEEE Trans. Image Processing. Vol. 8, pp. 629-639, May. 1999. https://doi.org/10.1109/83.760311
  8. X. Li and M. Orchard, "New edge-directed interpolation," IEEE Trans. Image Processing. Vol. 10, No. 10, pp. 1521-1527, Oct. 2001. https://doi.org/10.1109/83.951537
  9. H. Yoo, "Closed-form least-squares technique for adaptive linear image interpolation," Electronics Letters. Vol. 43, pp. 210-212, Feb. 2007. https://doi.org/10.1049/el:20073606
  10. Byong-Deok Choi and Hoon Yoo, "Design of piecewise weighted linear interpolation based on even-odd decomposition and its application to image resizing," IEEE Trans. Consumer Electronics, Vol. 55, No. 4, pp. 2280- 2286, Nov. 2009. https://doi.org/10.1109/TCE.2009.5373799
  11. M. Unser, "Anisotropic interpolation of sparse generalized image samples," IEEE Trans. Image Processing. Vol. 22, No. 2, pp. 459-472, Feb. 2013. https://doi.org/10.1109/TIP.2012.2217346
  12. Y. Zhang, D. Zhao, J. Zhang, R. Xiong, "Interpolationdependent image downsampling," IEEE Tans. Vol. 20, No. 11, pp. 3291-3296, Nov. 2011.

Cited by

  1. 디인터레이싱을 위한 방향지향 보간법의 개선 vol.18, pp.9, 2013, https://doi.org/10.6109/jkiice.2014.18.9.2209