DOI QR코드

DOI QR Code

Identification and Association of SNPs in TBC1D1 Gene with Growth Traits in Two Rabbit Breeds

  • Yang, Zhi-Juan (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Fu, Lu (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Zhang, Gong-Wei (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Yang, Yu (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Chen, Shi-Yi (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Wang, Jie (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Lai, Song-Jia (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus)
  • Received : 2013.05.17
  • Accepted : 2013.07.18
  • Published : 2013.11.01

Abstract

The TBC1D1 plays a key role in body energy homeostasis by regulating the insulin-stimulated glucose uptake in skeletal muscle. The present study aimed to identify the association between genetic polymorphisms of TBC1D1 and body weight (BW) in rabbits. Among the total of 12 SNPs detected in all 20 exons, only one SNP was non-synonymous (c.214G>A. p.G72R) located in exon 1. c.214G>A was subsequently genotyped among 491 individuals from two rabbit breeds by the high-resolution melting method. Allele A was the predominant allele with frequencies of 0.7780 and 0.6678 in European white rabbit (EWR, n = 205) and New Zealand White rabbit (NZW, n = 286), respectively. The moderate polymorphism information content (0.250.05). Our results implied that the c.214G>A of TBC1D1 gene might be one of the candidate loci affecting the trait of 35 d BW in the rabbit.

Keywords

References

  1. Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2:130-138. https://doi.org/10.1038/35052563
  2. Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  3. Chadt, A., K. Leicht, A. Deshmukh, L.Q. Jiang, S. Scherneck, U. Bernhardt, T. Dreja, H. Vogel, K. Schmolz, R. Kluge, J. R. Zierath, C. Hultschig, R. C. Hoeben, A. Schurmann, and H. Alhasani. 2008. Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat. Genet. 40:1354-1359. https://doi.org/10.1038/ng.244
  4. Crofford, O. B. and C. K. Davis Jr. 1965. Growth characteristics, glucose tolerance and insulin sensitivity of New Zealand obese mice. Metabolism 14:271-280. https://doi.org/10.1016/0026-0495(65)90068-5
  5. Darwin, C. 2009. On the origin of species: by means of natural selection, or the preservation of favored races in the struggle for life. 2nd edition. Valde Books, New York, New York.
  6. Felber, J. and A. Golay. 2002. Pathways from obesity to diabetes. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity. 26:S39-S45. https://doi.org/10.1038/sj.ijo.0802126
  7. Fontanesi, L., M. Colombo, L. Tognazzi, E. Scotti, L. Buttazzoni, S. Dall'Olio, R. Davoli, and V. Russo. 2011. The porcine TBC1D1 gene: mapping, SNP identification, and association study with meat, carcass and production traits in Italian heavy pigs. Mol. Biol. Rep. 38:1425-1431. https://doi.org/10.1007/s11033-010-0247-3
  8. Funai, K. and G. D. Cartee. 2009. Inhibition of contraction-stimulated AMP-activated protein kinase inhibits contraction-stimulated increases in PAS-TBC1D1 and glucose transport without altering PAS-AS160 in rat skeletal muscle. Diabetes 58:1096-1104. https://doi.org/10.2337/db08-1477
  9. Garritano, S., F. Gemignani, C. Voegele, T. Nguyen-Dumont, F. L. Calvez-Kelm, D. D. Silva, F. Lesueur, S. Landi, and S. V. Tavtigian. 2009. Determining the effectiveness of high resolution melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BMC Genet. 10:5. https://doi.org/10.1186/1471-2156-10-5
  10. Gu, X., C. Feng, L. Ma, C. Song, Y. Wang, Y. Da, H. Li, K. Chen, S. Ye, C. Ge, X. Hu, and N. Li. 2011. Genome-wide association study of body weight in chicken F2 resource population. PlOS ONE 6:e21872. https://doi.org/10.1371/journal.pone.0021872
  11. Ishiki, M. and A. Klip. 2005. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 146:5071-5078. https://doi.org/10.1210/en.2005-0850
  12. Kahn, B. B. and J. S. Flier. 2000. Obesity and insulin resistance. J. Clin. Invest. 106:473-481. https://doi.org/10.1172/JCI10842
  13. Letunic, I., T. Doerks, and P. Bork. 2009. SMART 6: recent updates and new developments. Nucl. Acids Res. 37:D229-D232. https://doi.org/10.1093/nar/gkn808
  14. Marchler-Bauer, A., A. R. Panchenko, B. A. Shoemaker, P. A. Thiessen, L. Y. Geer, and S. H. Bryant. 2013. CDD: conserved domains and protein three-dimensional structure. Nucl. Acids Res. 41(D1):D348-D352. https://doi.org/10.1093/nar/gks1243
  15. Martino, A., T. Mancuso, and A. M. Rossi. 2010. Application of high-resolution melting to large-scale, high-throughput SNP genotyping A comparison with the TaqMan. method. J. Biomol. Screen 15:623-629. https://doi.org/10.1177/1087057110365900
  16. Meyre, D., M. Farge, C. Lecoeur, C. Proenca, E. Durand, F. Allegaert, J. Tichet, M. Marre, B. Balkau, J. Weill, J. Delplanque, and P. Froguel. 2008. R125W coding variant in TBC1D1 confers risk for familial obesity and contributes to linkage on chromosome 4p14 in the French population. Hum. Mol. Genet. 17:1798-1802. https://doi.org/10.1093/hmg/ddn070
  17. Montgomery, J., C. T. Wittwer, R. Palais, and L. Zhou. 2007. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat. Protoc. 2:59-66. https://doi.org/10.1038/nprot.2007.10
  18. Nguyen.Dumont, T., F. L. Calvez.Kelm, N. Forey, S. McKay-Chopin, S. Garritano, L. Gioia-Patricola, D. D. Silva, R. Weigel, S. Sangrajrang, F. Lesueur, and S. V. Tavtigian. 2009. Description and validation of high.throughput simultaneous genotyping and mutation scanning by high.resolution melting curve analysis. Hum. Mutat. 30:884-890. https://doi.org/10.1002/humu.20949
  19. Raz, I., R. Eldor, S. Cernea, and E. Shafrir. 2005. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes/Metabolism Res. Rev. 21:3-14. https://doi.org/10.1002/dmrr.493
  20. Rubin, C.-J., M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood, M. T. Webster, L. Jiang, M. Ingman, T. Sharpe, S. Ka, F. Hallook, F. Besnier, O. Carlborg, B. Bed'hom, M. Tixier-Boichard, P. Jensen, P. Siegel, K. Lindblad-Toh, and L. Andersson. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587-591. https://doi.org/10.1038/nature08832
  21. Sakamoto, K. and G. D. Holman. 2008. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol-Endocrinol. Metab. 295:E29-E37. https://doi.org/10.1152/ajpendo.90331.2008
  22. Sauna, Z. E. and C. Kimchi-Sarfaty. 2011. Understanding the contribution of synonmous mutations to human disease. Nat. Rev. Genet. 12:683-691. https://doi.org/10.1038/nrg3051
  23. Schaid, D. J. and S. J. Jacobsen. 1999. Blased tests of association: comparisons of allele frequencies when departing from hardy-weinberg proportions. Am. J. Epidemiol. 149:706-711. https://doi.org/10.1093/oxfordjournals.aje.a009878
  24. Stone, S., V. Abkevich, D. L. Russell, R. Riley, K. Timms, T. Tran, D. Trem, D. Frank, S. Jammulapati, C. D. Neff, D. Lliev, R. Gress, G. He, G. C. Frech, T. D. Adams, M. H. Skolnick, J. S. Lanchbury, A. Gutin, S. C. Hunt, and D. Shattuck. 2006. TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum. Mol. Genet. 15:2709-2720. https://doi.org/10.1093/hmg/ddl204
  25. Taylor, E. B., D. An, H. F. Kramer, H. Yu, N. L. Fujii, K. S. C. Roeckl, N. Bowles, M. F. Hirshman, J. Xie, E. P. Feener, and L. J. Goodyear. 2008. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J. Biol. Chem. 283:9787-9796. https://doi.org/10.1074/jbc.M708839200
  26. Watson, R. T., M. Kanzaki, and J. E. Pessin. 2004. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocrinol. Rev. 25:177-204. https://doi.org/10.1210/er.2003-0011
  27. West, D. B., C. N. Boozer, D. L. Moody, and R. L. Atkinson. 1992. Dietary obesity in nine inbred mouse strains. Am. J. Physiol-Regul. Inetgr. Comp. Physiol. 262:R1025-R1032.
  28. Will, E. and D. Gallwitz. 2001. Biochemical characterization of Gyp6p, a Ypt/Rab-specific GTPase-activating protein from yeast. J. Biol. Chem. 276:12135-12139. https://doi.org/10.1074/jbc.M011451200
  29. Wittwer, C. T., G. H. Reed, C. N. Gundry, J. G. Vandersteen, and R. J. Pryor. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49:853-860. https://doi.org/10.1373/49.6.853
  30. Wuschke, S., S. Dahm, C. Schmidt, H.G. Joost, and H. Al-Hasani. 2006. A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice. Int. J. Obes. 31:829-841.
  31. Yaich, L., J. Ooi, M. Park, J. P. Borg, C. Landry, R. Bodmer, and B. Margolis. 1998. Functional analysis of the Numb phosphotyrosine-binding domain using site-directed mutagenesis. J. Biol. Chem. 273:10381-10388. https://doi.org/10.1074/jbc.273.17.10381
  32. Yan, K. S., M. Kuti, and M. M. Zhou. 2002. PTB or not PTB.that is the question. FEBS Lett. 513:67-70. https://doi.org/10.1016/S0014-5793(01)03305-1
  33. Zaid, H., C. Antonescu, V. Randhawa, and A. Klip-Biochem. 2008. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem. J. 413:201-215. https://doi.org/10.1042/BJ20080723
  34. Zhang, G. W., H. Z. Wang, S. Y. Chen, Z. C. Li, W. X. Zhang, and S. J. Lai. 2011. A reduced incidence of digestive disorders in rabbits is associated with allelic diversity at the TLR4 locus. Vet. Immunol. Immunop. 144:482-486. https://doi.org/10.1016/j.vetimm.2011.08.009
  35. Zhou, M.-M., K. S. Ravichandran, E. T. Olejniczak, A. M. Petros, R. P. Meadows, M. Sattler, J. E. Harlan, W. S. Wade, S. J. Burakoff, and S. W. Fesik. 1995. Structure and ligand recognition of the phosphotyrosine binding domain of Shc. Nature 378:584-592. https://doi.org/10.1038/378584a0
  36. Zhou, Q. L., Z. Y. Jiang, J. Holik, A. Chawla, G. N. Hagan, J. Leszyk, and M. P. Czech. 2008. Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes. Biochem. J. 411:647-655. https://doi.org/10.1042/BJ20071084

Cited by

  1. ) Gene and Association with Finishing Weight in a Commercial Meat Rabbit Line vol.27, pp.2, 2016, https://doi.org/10.1080/10495398.2015.1101697
  2. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice vol.309, pp.3, 2015, https://doi.org/10.1152/ajpendo.00007.2015
  3. Tbc1d1 deletion suppresses obesity in leptin-deficient mice vol.40, pp.8, 2016, https://doi.org/10.1038/ijo.2016.45
  4. Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice vol.310, pp.4, 2016, https://doi.org/10.1152/ajpendo.00342.2015
  5. Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity vol.475, pp.18, 2018, https://doi.org/10.1042/BCJ20180475
  6. Disruption of the AMPK-TBC1D1 nexus increases lipogenic gene expression and causes obesity in mice via promoting IGF1 secretion vol.113, pp.26, 2016, https://doi.org/10.1073/pnas.1600581113
  7. Single Nucleotide Polymorphism of TBC1D1 Gene Association with Growth Traits and Serum Clinical-Chemical Traits in Chicken vol.45, pp.4, 2013, https://doi.org/10.5536/kjps.2018.45.4.291
  8. A Genome-Wide Association Study Identifying Genetic Variants Associated with Growth, Carcass and Meat Quality Traits in Rabbits vol.10, pp.6, 2013, https://doi.org/10.3390/ani10061068
  9. TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes vol.10, pp.1, 2013, https://doi.org/10.1038/s41598-020-74661-1