DOI QR코드

DOI QR Code

Post-combustion CO2 capture with potassium L-lysine

Potassium L-lysine을 이용한 연소 후 이산화탄소 포집

  • Lim, Jin Ah (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yoon, Yeo Il (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Nam, Sung Chan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Jeong, Soon Kwan (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 임진아 (한국에너지기술연구원 온실가스연구단) ;
  • 윤여일 (한국에너지기술연구원 온실가스연구단) ;
  • 남성찬 (한국에너지기술연구원 온실가스연구단) ;
  • 정순관 (한국에너지기술연구원 온실가스연구단)
  • Received : 2013.06.17
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

Carbon dioxide is one of the main causes of global warming. In order to develop a novel absorbent, the characteristics of amino acid salts solution as a solvent for $CO_2$ capture in continuous process were investigated. The cost of $CO_2$ capture is almost 70% of total cost of CCS (carbon dioxide capture and storage). In the carbon dioxide capture process, process maintenance costs consist of the absorbent including the absorption, regeneration, degradation, and etc. It is very important to study the characteristics of absorbent in continuous process. In this study, we have investigated the properties of potassium L-lysine (PL) for getting scale-up factors in continuous process. To obtain optimum condition for removal efficiency of $CO_2$ in continuous process by varying liquid-gas (L/G) ratio, concentration of $CO_2$ and absorbent (PL) were tested. The stable condition of absorber and regenerator (L/G) ratio is 3.5. In addition, PL system reveals the highest removal efficiency of $CO_2$ with 3.5 of L/G and 10.5 vol% $CO_2$ ($1.5Nm^3/h$).

지구온난화 주요 원인 중에 하나인 이산화탄소의 효율적 저감을 위해 새로운 흡수제인 아미노산염 흡수제를 개발하여 이산화탄소 연속공정을 연구하였다. 이산화탄소 포집 및 저장에 소요되는 비용 중 약 70%는 이산화탄소 포집비용이며, 이산화탄소 포집 공정 중에서 이산화탄소 흡수, 재생, 열화 등 흡수제에 의한 공정유지 비용이 대부분을 차지한다. 따라서 연속공정을 통한 흡수제의 특성 평가는 새로운 흡수제 개발에 매우 중요한 요소이다. 본 연구에서는 potassium L-lysine 흡수제의 이산화탄소 흡수 재생 연속공정을 평가하여 공정 스케일업에 필요한 엔지니어링 자료를 도출하고자 하였다. 흡수제와 이산화탄소 농도 변화 등 다양한 조건에서 아미노산염 흡수제의 최적 조건을 평가하였다. 동일한 조건에서 L/G가 커질수록 이산화탄소 제거율이 높게 나타났으며, L/G 3.5에서 흡수탑과 재생탑 공정이 안정하게 유지되었다. 또한 아미노산염 흡수제는 유량 1.5 $Nm^3/h$인 상태에서 L/G 3.5, 이산화탄소 농도 10.5 vol%의 공정 조건일 때 가장 높은 이산화탄소 제거효율이 나타내었다.

Keywords

References

  1. Korea Carbon Capture & Sequestration R&D Center, www.kcrc.re.kr
  2. J. K. Lim, "UNFCCC National Communication", Korea Energy Economics Institute, 2003.
  3. B. A. Oyenekan, G. T. Rochelle, "Energy Performance of Stripper Configurations for $CO_2$ Capture by Aqueous Amines", Ind. Eng. Chem. Res., 45, 2457-2464, 2006 DOI: http://dx.doi.org/10.1021/ie050548k
  4. A. Belld, and R. O. Idem, "Comprehensive Study of the Kinetics of the Oxidative Degradation of $CO_2$ Loaded and Concentrated Aqueous Monoethanolamine(MEA) with and without Sodium Metavanadate during $CO_2$ Absorption from Flue Gases", Ind. Eng. Chem. Res., 45, 2569-2579, 2006. DOI: http://dx.doi.org/10.1021/ie050562x
  5. J. Gabrielsen, H. F. Svendsen, M. L.Michelsen, E. H. Stenby, G. M.Kontgeorgis, " Experimental Validation of a Rate-based Model for $CO_2$ Capture using an AMP Solution", Chem. Eng. Sci., 62, 2397-2413, 2007 DOI: http://dx.doi.org/10.1016/j.ces.2007.01.034
  6. J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, X. Lv, "Supported absorption of $CO_2$ by tetrabutyphosphonium amino acid ionic liquids." Chemistry., 12(5), 4021-4026, 2006 https://doi.org/10.1002/chem.200501015
  7. P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron, G.F. Versteeg, "Equilibrium solubility of $CO_2$ in aqueous potassium taurate solutions: Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids.", In. Eng. Chem. Res., 42(12) 2832-2840, 2003 DOI: http://dx.doi.org/10.1021/ie0206002
  8. P.S. Kumar, J.A. Hogendeeorn, S.J. Timmer, P.H.M Feron, G.F. Versteeg, Equilibrium solubility of $CO_2$ in aqueous potassium taurate solutions: Part 2. Experimental VLE data and model.", In. Eng. Chem. Res., 42(12) 2841-2852 ,2003 https://doi.org/10.1021/ie020601u
  9. Lee, S., Song, H.J., Maken, S., H.C., Song, H.C. and Park, J., "Physical solubility and diffusivity of N2O and $CO_2$ in aqueous sodium glycinate solution.", J. Chem. Eng. Data., 51(2), 504-509, 2006 DOI: http://dx.doi.org/10.1021/je0503913
  10. H.J. Song, S.M. Lee, J.H. Lee, J.W. Park, K.R. Jang, J.G. Shim, J.H. Kim, "Absorption of carbon dioxide into aquous potassium salt of serine.", KSEE., 31, 505-514, 2008
  11. E. S. Fernamdez, E. L. V. Goetheer, " DECAB: process development of a phase change absorption process", Energy Procedia, 4, 868-875, 2011. DOI: http://dx.doi.org/10.1016/j.egypro.2011.01.131
  12. H. Bosch, G.F. Versteeg, W.P.M. Van Swaaij, "Gas-liquid mass transfer with parallel reversible reaction-I. Absorption of $CO_2$ into solutions of sterically hindered amines", Chem. Eng. Sci., 44(11), 2723-2734, 1989 DOI: http://dx.doi.org/10.1016/0009-2509(89)85217-0
  13. P.M.M. Blauwhoff, G.F. Versteeg, W.P.M. Van Swaaij, "A Study on The Reaction Between $CO_2$ and Alkanolamines in Aqueous Solutions", Chem. Eng. Sci., 39(2), 207-225, 1984 DOI: http://dx.doi.org/10.1016/0009-2509(84)80021-4
  14. J.E. Crooks, J.P. Donnellan, "Kinetics and Mechanism of the Reaction between Carbon Dioxide and Amines in Aqueous Solution", J. Chem. Soc., Perkin transactions 2, 4, 331-333, 1989 DOI: http://dx.doi.org/10.1039/p29890000331
  15. G.F. Versteeg, J.A.M. Kuipers, F.P.H. Van Beckum, W.P.M. Van Swaaij, "Mass transfer with complex reversible chemical reactions-I. Single reversible chemical reaction. Chem. Eng. Sci., 44(10), 2295-2310, 1989 DOI: http://dx.doi.org/10.1016/0009-2509(89)85163-2

Cited by

  1. Degradation Characteristics of Aqueous MEA Solution by Corrosion Products and Absorption Conditions vol.27, pp.3, 2016, https://doi.org/10.7316/KHNES.2016.27.3.290