DOI QR코드

DOI QR Code

Effects of the Convergence Training on Reduction of Visual Discomfort in 3D TV Environment

3D TV 시청 환경에서 수렴 훈련에 의한 시각적 불편감의 감소

  • Received : 2013.07.23
  • Accepted : 2013.09.16
  • Published : 2013.09.30

Abstract

The present study investigated whether convergence training in which has an effect on reducing visual discomfort in viewing 3D TV. The stereoscopic depth of 3D training stimulus was gradually increased while maintaining individual visual discomfort at a minimum value. Participants were randomly assigned into one of three groups: a control group and two training groups. For both training groups, all procedure and the disparity range of training stimuli were the same except the order of the disparities of training stimuli. One of the two different training procedure was provided: gradual change or random change of the disparities of training stimulus. Training itself was very effective so that convergence fusional range was improved after three sessions of training with intervals of two weeks. In order to evaluate the effect of convergence training on visual discomfort, the subjective visual discomfort in 3D TV viewing was measured before and after training sessions using questionnaire. The results showed that a significant reduction in visual discomfort was found after training only in the group of gradual change. These results demonstrated a repeated convergence training might be helpful in reducing the visual discomfort in 3D TV environment.

본 연구는 개인의 불편감을 최소로 유지한 상태에서 3D 자극의 깊이를 늘려나가는 수렴 훈련을 통해 시각적 불편감이 감소되는지를 알아보고자 수행되었다. 실험집단은 수렴 훈련에 사용된 자극의 입체시 깊이가 순차적으로 변화하는지 무선적으로 변화하는지에 따라 두 개의 훈련 집단으로 나뉘었다. 수렴 훈련은 약 2주 간격으로 3회 실시되었으며 훈련 집단의 융합영역(fusional range)을 증가시켰다. 수렴 훈련이 시각적 불편감에 미치는 영향을 평가하기 위해 훈련 회기의 전과 후에 3D 영상을 시청하게 한 뒤, 주관적인 시각적 불편감을 설문 문항으로 측정하였다. 실험 결과, 시각적 불편감은 훈련 자극의 깊이를 순차적으로 변화시킨 훈련집단에서 감소하였다. 이러한 결과는 반복된 수렴 훈련이 3D 환경에서 시각적 불편감을 줄이는 데 효과적일 수 있음을 시사한다.

Keywords

References

  1. Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 8(3), 1-30, 3, 2008.
  2. Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 8(3), 1-30, 3, 2008.
  3. Seuntiëns, P. J. H., Meesters, L. M. J., Ijsselsteijn, W. A. Perceptual attributes of crosstalk in 3D images. Display, 26, 177-183, 10, 2005. https://doi.org/10.1016/j.displa.2005.06.005
  4. Kuze, J., & Ukai, K., Subjective evaluation of visual fatigue caused by motion images. Display, 29, 159-166, 3, 2008. https://doi.org/10.1016/j.displa.2007.09.007
  5. Yano, S., Ide, S., Mitsuhashi, T., & Thwaites, H. A study of visual fatigue and visual comfort for 3D HDTV/HDTV image. Displays, 23, 191-201, 9, 2002. https://doi.org/10.1016/S0141-9382(02)00038-0
  6. Emoto, M., Niida, T., & Okano, F. Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. Journal of Display Technology, 1(2), 328-340, 12, 2005. https://doi.org/10.1109/JDT.2005.858938
  7. Lipton, L. Foundations of the stereoscopic cinema: A study in depth. NewYork, NY: Van Nostrand Reinhold, 1982.
  8. Patterson, R. Human factors of stereo displays: An update. Journal of the Society for Information Display, 17, 987-996, 2009. https://doi.org/10.1889/JSID17.12.987
  9. Woods, A., Docherty, T. & Koch, R. Image Distortions in Stereoscopic Video Systems"", Proc. SPIE, 1915, 36-49, 1993. https://doi.org/10.1117/12.157041
  10. Kooi, F. L., & Toet, A. Visual comfort of binocular and 3D displays. Displays, 25, 99-108, 2004. https://doi.org/10.1016/j.displa.2004.07.004
  11. Yano, S., Emoto, M., & Mitsuhashi, T. Two factors in visual fatigue caused by stereoscopic HDTV images. Display, 25, 141-150, 2004. https://doi.org/10.1016/j.displa.2004.09.002
  12. Emoto, M., Nagata, S., Yano, S. Distribution of fusional vergence limit in viewing stereoscopic image systems, Journal of Institute of Transportation Engineers, 55, 703-710, 2001.
  13. Lambooij, M., & Ijsselsteijn, W. Visual discomfort and visual fatigue of stereoscopic displays: A Review. Journal of Imaging Science and Technology, 53(3), 030201-1-30201-14, 3, 2009. https://doi.org/10.2352/J.ImagingSci.Technol.2009.53.3.030201
  14. Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 8(3), 1-30, 1, 2008.
  15. Leeuwen, A. F., Westen, M. J., Steen, J. V. D., Faber, J. T., & Collewijn, H. Gaze-shift dynamics in subjects with and without symptoms of convergence insufficiency: influence of monocular preference and the effect of training. Vision Research, 39, 3095-3107, 9, 1999. https://doi.org/10.1016/S0042-6989(99)00066-8
  16. Bucci, M. P., Kapoula, Z., Yang, Q., Bremond-Gignac, D., & Wiener-Vacher, S. Speed-accuracy of saccades, vergence and combined eye movements in children with vertigo. Experimental Brain Research, 157, 286-295, 3, 2004.
  17. Jainta, S., Bucci, M. P., Wiener-Vacher, S., & Kapoula, Z. Changes in vergence dynamics due to repetition. Vision Research, 51, 1845-1852, 8, 2011. https://doi.org/10.1016/j.visres.2011.06.014
  18. Daum, K. M., Rutstein, R. P., & Eskridge, J. B. Efficacy of computerized vergence therapy. American Journal of Optometry and Physiological Optics, 64, 83-89, 2, 1987. https://doi.org/10.1097/00006324-198702000-00002
  19. Griffin, J. R. Efficacy of vision therapy for nonstrabismic vergence anomalies. American Journal of Optometry and Physiological Optics, 64, 411-414, 6, 1987. https://doi.org/10.1097/00006324-198706000-00005
  20. Grisham, J. D, Bowman, M. C., Owyang, L. A., & Chan, C. L. Vergence orthoptics: validity and persistence of the training effect. Optometry and Vision Science, 68(6), 441-451, 6, 1991. https://doi.org/10.1097/00006324-199106000-00005
  21. Li, H. O. Human Factor Research on the Measurement of Subjective Three Dimensional Fatigue. Journal of broadcasting engineering, 15(5), 607-616, 2010. https://doi.org/10.5909/JBE.2010.15.5.607
  22. Emoto, M., Niida, T., & Okano, F. Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. Journal of Display Technology, 1(2), 328-340, 12, 2005. https://doi.org/10.1109/JDT.2005.858938
  23. Wolfgang, J. K. On the preferred viewing distances to screen and document at VDU workplaces. Ergonomics, 33, 1055-1063, 1990. https://doi.org/10.1080/00140139008925312
  24. Cooper, J., Selenow, A., Ciuffreda, K. J., Feldman, J., Faverty, J. Hokoda, S. C., & Silver, J. Reduction of asthenopia in patients with convergence insufficiency after fusional vergence training, American Journal of Optometry & Physiological Optics, 60(12), 982-989, 9, 1983. https://doi.org/10.1097/00006324-198312000-00007
  25. Cooper, J., & Feldman, J. Operant conditioning of fusional convergence ranges using random dot stereograms, American Journal of Optometry & Physiological optics, 57(4), 205-213, 4, 1980. https://doi.org/10.1097/00006324-198004000-00002
  26. Allison, R. S., Gillam, B. J., & Vecelli, E. Binocular depth discrimination and estimation beyond interaction space. Journal of Vision, 9, 1-14, 1, 2009.
  27. Bruce, V., Green, P. R., & Georgeson, M. A. Visual perception: physiology, psychology & ecology. Psychology Press, fourth edition, 2003.
  28. Palmer, S. E. Vision Science: Photons to Phenomenology. MIT Press, 1999.
  29. Schor, C. M., & Tsuetaki, T. K. Fatigue of accommodation and vergence modifies their mutual interactions. Investigative Ophthalmology & Visual Science, 28, 1250-1259, 8, 1987.
  30. Passmore, J. W., & MacLean, F. Convergence insufficiency and its managements; an evaluation of 100 patients receiving a course of orthoptics, American Journal of Ophthalmology, 43(3), 448-456, 3, 1957. https://doi.org/10.1016/0002-9394(57)92346-2