참고문헌
- Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. 29: 2509-2517. https://doi.org/10.1016/j.wasman.2009.05.005
- Amaral JA, Knowles R. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126: 215-220. https://doi.org/10.1111/j.1574-6968.1995.tb07421.x
- Auman AJ, Stolyar S, Costello AM, Lidstrom ME. 2000. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Environ. Microbiol. 66: 5259-5266. https://doi.org/10.1128/AEM.66.12.5259-5266.2000
- Aymerich T, Martin B, Garriga M, Hugas M. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 69: 4583-4594; Erratum. 2005. 71: 1674-1674. https://doi.org/10.1128/AEM.69.8.4583-4594.2003
- Bezrukova LV, Nikolenko YI, Nesterov AI, Galchenko VF, Ivanov MV. 1983. Comparative serological analysis of methanotrophic bacteria. Microbiology 52: 626-631.
- Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582. https://doi.org/10.1046/j.1462-2920.2003.00450.x
- Bogner J, Spokas K, Burton E, Sweeney R, Corona V. 1995. Landfills as atmospheric methane sources and sinks. Chemosphere 31: 4119-4130. https://doi.org/10.1016/0045-6535(95)80012-A
-
Bogner JE, Spokas KA, Burton EA. 1997. Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole landfill oxidation experiment, and modeling of net
$CH_4$ emissions. Environ. Sci. Technol. 31: 2504-2514. https://doi.org/10.1021/es960909a - Borjesson G, Chanton J, Svensson BH. 2001. Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J. Environ. Qual. 30: 369-376. https://doi.org/10.2134/jeq2001.302369x
-
Borjesson G, Sundh I, Svensson B. 2004. Microbial oxidation of
$CH_4$ at different temperatures in landfill cover soils. FEMS Microbiol. Ecol. 48: 305-312. https://doi.org/10.1016/j.femsec.2004.02.006 -
Borjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH. 1998. Microbial oxidation of
$CH_4$ at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol. Ecol. 26: 207-217. https://doi.org/10.1016/S0168-6496(98)00036-1 - Bowman JP, Sly LI, Stackebrandt E. 1995. The phylogenetic position of the family Methylococcaceae. Int. J. Syst. Bacteriol. 45: 182-185. https://doi.org/10.1099/00207713-45-1-182
- Chanton JP, Rutkowski CM, Mosher B. 1999. Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ. Sci. Technol. 33: 3755-3760. https://doi.org/10.1021/es9904033
- Chi Z, Lu W, Mou Z, Wang H, Long Y, Duan Z. 2012. Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. J. Air Waste Manag. Assoc. 62: 278-286. https://doi.org/10.1080/10473289.2011.647236
- Dedysh SN, Panikov NS, Liesack W, Grosskopf R, Zhou JZ, Tiedje JM. 1998. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282: 281-284. https://doi.org/10.1126/science.282.5387.281
- Deutzmann JS, Schink B. 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77: 4429-4436. https://doi.org/10.1128/AEM.00340-11
- Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, et al. 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci. Biotechnol. Biochem. 62: 1925-1931. https://doi.org/10.1271/bbb.62.1925
- Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK, Murrell JC. 2000. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl. Environ. Microbiol. 66: 966-975. https://doi.org/10.1128/AEM.66.3.966-975.2000
- Gomez KE, Gonzalez-Gil G, Lazzaro A, Schroth MH. 2009. Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests. Waste Manag. 29: 2518-2526. https://doi.org/10.1016/j.wasman.2009.05.011
- Graham DW, Chaudhary JA, Hanson RS, Arnold RG. 1993. Factors affecting competition between type-I and type-II methanotrophs in 2-organism, continuous-flow reactors. Microbial Ecol. 25: 1-17.
- Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
- He R, Ruan AD, Jiang CJ, Shen DS. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol. 99: 7192-7199. https://doi.org/10.1016/j.biortech.2007.12.066
- Henckel T, Friedrich M, Conrad R. 1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65: 1980-1990.
- Henckel T, Roslev P, Conrad R. 2000. Effects of O(2) and CH(4) on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679. https://doi.org/10.1046/j.1462-2920.2000.00149.x
- Kightley D, Nedwell DB, Cooper M. 1995. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl. Environ. Microbiol. 61: 592-601.
- Kolb S, Knief C, Dunfield PF, Conrad R. 2005. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7: 1150-1161. https://doi.org/10.1111/j.1462-2920.2005.00791.x
- Lu F, He PJ, Guo M, Yang N, Shao LM. 2012. Ammoniumdependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation. J. Environ. Sci. (China) 24: 711-719. https://doi.org/10.1016/S1001-0742(11)60813-9
- Mohanty SR, Bodelier PLE, Conrad R. 2007. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol. Ecol. 62: 24-31. https://doi.org/10.1111/j.1574-6941.2007.00370.x
- Morton JD, Hayes KF, Semrau JD. 2000. Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 66: 1730-1733. https://doi.org/10.1128/AEM.66.4.1730-1733.2000
- Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI. 1994. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269: 14995-15005.
- Rahalkar M, Bussmann I, Schink B. 2007. Methylosoma difficile gen. nov., sp nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int. J. Syst. Evol. Microbiol. 57: 1073-1080. https://doi.org/10.1099/ijs.0.64574-0
- Scheutz C, Kjeldsen P. 2004. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J. Environ. Qual. 33: 72-79. https://doi.org/10.2134/jeq2004.7200
- Schroth MH, Eugster W, Gomez KE, Gonzalez-Gil G, Niklaus PA, Oester P. 2012. Above- and below-ground methane fluxes and methanotrophic activity in a landfillcover soil. Waste Manag. 32: 879-889. https://doi.org/10.1016/j.wasman.2011.11.003
- Seghers D, Siciliano SD, Top EM, Verstraete W. 2005. Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biol. Biochem. 37: 187-193. https://doi.org/10.1016/j.soilbio.2004.05.025
- Shen RN, Yu CL, Ma QQ, Li SB. 1997. Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria: Purification and properties of a soluble methane monooxygenase from Methylomonas sp. GYJ3. Arch. Biochem. Biophys. 345: 223-229. https://doi.org/10.1006/abbi.1997.0239
- Sproles C. 2009. Intergovernmental panel on climate change (IPCC). Government Information Quarterly 26: 428-429.
- Strous M, Jetten MS. 2004. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58: 99-117. https://doi.org/10.1146/annurev.micro.58.030603.123605
- Tate KR, Walcroft AS, Pratt C. 2012. Varying atmospheric methane concentrations affect soil methane oxidation rates and methanotroph populations in pasture, an adjacent pine forest, and a landfill. Soil Biol. Biochem. 52: 75-81. https://doi.org/10.1016/j.soilbio.2012.04.011
-
Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J. 2009. Response of methanotrophic activity and community structure to temperature changes in a diffusive
$CH_4/O_2$ counter gradient in an unsaturated porous medium. FEMS Microbiol. Ecol. 69: 202-212. https://doi.org/10.1111/j.1574-6941.2009.00708.x - Vanamstel AR, Swart RJ. 1994. Methane and nitrous-oxide emissions - an introduction. Fertilizer Res. 37: 213-225. https://doi.org/10.1007/BF00748940
- Whalen SC, Reeburgh WS, Sandbeck KA. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56: 3405-3411.
- Wise MG, McArthur JV, Shimkets LJ. 1999. Methanotroph diversity in landfill soil: Isolation of novel type I and type II methanotrophs whose presence was suggested by cultureindependent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65: 4887-4897.
- Zheng Y, Zhang LM, Zheng YM, Di HJ, He JZ. 2008. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J. Soils Sediments 8: 406-414. https://doi.org/10.1007/s11368-008-0047-8
피인용 문헌
- Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China vol.25, pp.4, 2013, https://doi.org/10.4014/jmb.1408.08055
- Microbial Abundance and Activity in Biochar-Amended Landfill Cover Soils: Evidence from Large-Scale Column and Field Experiments vol.143, pp.9, 2017, https://doi.org/10.1061/(asce)ee.1943-7870.0001254
- Effect of temperature on methane oxidation and community composition in landfill cover soil vol.46, pp.9, 2013, https://doi.org/10.1007/s10295-019-02217-y
- Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology vol.8, pp.2, 2013, https://doi.org/10.3390/environments8020016