DOI QR코드

DOI QR Code

Mitigating $CH_4$ Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils

  • Li, Huai (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University) ;
  • Chi, Zi-Fang (Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University) ;
  • Lu, Wen-Jing (School of Environment, Tsinghua University) ;
  • Wang, Hong-Tao (School of Environment, Tsinghua University)
  • Received : 2012.12.04
  • Accepted : 2013.03.16
  • Published : 2013.07.28

Abstract

Methanotrophs are the most important sink of $CH_4$, which is a more highly potent greenhouse gas than $CO_2$. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from $1.07{\times}10^6$ to $2.34{\times}10^7$ copies/g soil and that of Type II methanotrophs from $1.51{\times}10^7$ to $1.83{\times}10^8$ copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow $O_2$ with high $CH_4$ concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve $CH_4$ mitigation.

Keywords

References

  1. Ait-Benichou S, Jugnia LB, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manag. 29: 2509-2517. https://doi.org/10.1016/j.wasman.2009.05.005
  2. Amaral JA, Knowles R. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126: 215-220. https://doi.org/10.1111/j.1574-6968.1995.tb07421.x
  3. Auman AJ, Stolyar S, Costello AM, Lidstrom ME. 2000. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Environ. Microbiol. 66: 5259-5266. https://doi.org/10.1128/AEM.66.12.5259-5266.2000
  4. Aymerich T, Martin B, Garriga M, Hugas M. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 69: 4583-4594; Erratum. 2005. 71: 1674-1674. https://doi.org/10.1128/AEM.69.8.4583-4594.2003
  5. Bezrukova LV, Nikolenko YI, Nesterov AI, Galchenko VF, Ivanov MV. 1983. Comparative serological analysis of methanotrophic bacteria. Microbiology 52: 626-631.
  6. Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A. 2003. Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5: 566-582. https://doi.org/10.1046/j.1462-2920.2003.00450.x
  7. Bogner J, Spokas K, Burton E, Sweeney R, Corona V. 1995. Landfills as atmospheric methane sources and sinks. Chemosphere 31: 4119-4130. https://doi.org/10.1016/0045-6535(95)80012-A
  8. Bogner JE, Spokas KA, Burton EA. 1997. Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole landfill oxidation experiment, and modeling of net $CH_4$ emissions. Environ. Sci. Technol. 31: 2504-2514. https://doi.org/10.1021/es960909a
  9. Borjesson G, Chanton J, Svensson BH. 2001. Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J. Environ. Qual. 30: 369-376. https://doi.org/10.2134/jeq2001.302369x
  10. Borjesson G, Sundh I, Svensson B. 2004. Microbial oxidation of $CH_4$ at different temperatures in landfill cover soils. FEMS Microbiol. Ecol. 48: 305-312. https://doi.org/10.1016/j.femsec.2004.02.006
  11. Borjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH. 1998. Microbial oxidation of $CH_4$ at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol. Ecol. 26: 207-217. https://doi.org/10.1016/S0168-6496(98)00036-1
  12. Bowman JP, Sly LI, Stackebrandt E. 1995. The phylogenetic position of the family Methylococcaceae. Int. J. Syst. Bacteriol. 45: 182-185. https://doi.org/10.1099/00207713-45-1-182
  13. Chanton JP, Rutkowski CM, Mosher B. 1999. Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ. Sci. Technol. 33: 3755-3760. https://doi.org/10.1021/es9904033
  14. Chi Z, Lu W, Mou Z, Wang H, Long Y, Duan Z. 2012. Effect of biocover equipped with a novel passive air diffusion system on microbial methane oxidation and community of methanotrophs. J. Air Waste Manag. Assoc. 62: 278-286. https://doi.org/10.1080/10473289.2011.647236
  15. Dedysh SN, Panikov NS, Liesack W, Grosskopf R, Zhou JZ, Tiedje JM. 1998. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282: 281-284. https://doi.org/10.1126/science.282.5387.281
  16. Deutzmann JS, Schink B. 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77: 4429-4436. https://doi.org/10.1128/AEM.00340-11
  17. Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, et al. 1998. Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci. Biotechnol. Biochem. 62: 1925-1931. https://doi.org/10.1271/bbb.62.1925
  18. Gilbert B, McDonald IR, Finch R, Stafford GP, Nielsen AK, Murrell JC. 2000. Molecular analysis of the pmo (particulate methane monooxygenase) operons from two type II methanotrophs. Appl. Environ. Microbiol. 66: 966-975. https://doi.org/10.1128/AEM.66.3.966-975.2000
  19. Gomez KE, Gonzalez-Gil G, Lazzaro A, Schroth MH. 2009. Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests. Waste Manag. 29: 2518-2526. https://doi.org/10.1016/j.wasman.2009.05.011
  20. Graham DW, Chaudhary JA, Hanson RS, Arnold RG. 1993. Factors affecting competition between type-I and type-II methanotrophs in 2-organism, continuous-flow reactors. Microbial Ecol. 25: 1-17.
  21. Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.
  22. He R, Ruan AD, Jiang CJ, Shen DS. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresour. Technol. 99: 7192-7199. https://doi.org/10.1016/j.biortech.2007.12.066
  23. Henckel T, Friedrich M, Conrad R. 1999. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65: 1980-1990.
  24. Henckel T, Roslev P, Conrad R. 2000. Effects of O(2) and CH(4) on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2: 666-679. https://doi.org/10.1046/j.1462-2920.2000.00149.x
  25. Kightley D, Nedwell DB, Cooper M. 1995. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl. Environ. Microbiol. 61: 592-601.
  26. Kolb S, Knief C, Dunfield PF, Conrad R. 2005. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7: 1150-1161. https://doi.org/10.1111/j.1462-2920.2005.00791.x
  27. Lu F, He PJ, Guo M, Yang N, Shao LM. 2012. Ammoniumdependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation. J. Environ. Sci. (China) 24: 711-719. https://doi.org/10.1016/S1001-0742(11)60813-9
  28. Mohanty SR, Bodelier PLE, Conrad R. 2007. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol. Ecol. 62: 24-31. https://doi.org/10.1111/j.1574-6941.2007.00370.x
  29. Morton JD, Hayes KF, Semrau JD. 2000. Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 66: 1730-1733. https://doi.org/10.1128/AEM.66.4.1730-1733.2000
  30. Nguyen HHT, Shiemke AK, Jacobs SJ, Hales BJ, Lidstrom ME, Chan SI. 1994. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269: 14995-15005.
  31. Rahalkar M, Bussmann I, Schink B. 2007. Methylosoma difficile gen. nov., sp nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int. J. Syst. Evol. Microbiol. 57: 1073-1080. https://doi.org/10.1099/ijs.0.64574-0
  32. Scheutz C, Kjeldsen P. 2004. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J. Environ. Qual. 33: 72-79. https://doi.org/10.2134/jeq2004.7200
  33. Schroth MH, Eugster W, Gomez KE, Gonzalez-Gil G, Niklaus PA, Oester P. 2012. Above- and below-ground methane fluxes and methanotrophic activity in a landfillcover soil. Waste Manag. 32: 879-889. https://doi.org/10.1016/j.wasman.2011.11.003
  34. Seghers D, Siciliano SD, Top EM, Verstraete W. 2005. Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biol. Biochem. 37: 187-193. https://doi.org/10.1016/j.soilbio.2004.05.025
  35. Shen RN, Yu CL, Ma QQ, Li SB. 1997. Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria: Purification and properties of a soluble methane monooxygenase from Methylomonas sp. GYJ3. Arch. Biochem. Biophys. 345: 223-229. https://doi.org/10.1006/abbi.1997.0239
  36. Sproles C. 2009. Intergovernmental panel on climate change (IPCC). Government Information Quarterly 26: 428-429.
  37. Strous M, Jetten MS. 2004. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58: 99-117. https://doi.org/10.1146/annurev.micro.58.030603.123605
  38. Tate KR, Walcroft AS, Pratt C. 2012. Varying atmospheric methane concentrations affect soil methane oxidation rates and methanotroph populations in pasture, an adjacent pine forest, and a landfill. Soil Biol. Biochem. 52: 75-81. https://doi.org/10.1016/j.soilbio.2012.04.011
  39. Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J. 2009. Response of methanotrophic activity and community structure to temperature changes in a diffusive $CH_4/O_2$ counter gradient in an unsaturated porous medium. FEMS Microbiol. Ecol. 69: 202-212. https://doi.org/10.1111/j.1574-6941.2009.00708.x
  40. Vanamstel AR, Swart RJ. 1994. Methane and nitrous-oxide emissions - an introduction. Fertilizer Res. 37: 213-225. https://doi.org/10.1007/BF00748940
  41. Whalen SC, Reeburgh WS, Sandbeck KA. 1990. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol. 56: 3405-3411.
  42. Wise MG, McArthur JV, Shimkets LJ. 1999. Methanotroph diversity in landfill soil: Isolation of novel type I and type II methanotrophs whose presence was suggested by cultureindependent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65: 4887-4897.
  43. Zheng Y, Zhang LM, Zheng YM, Di HJ, He JZ. 2008. Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J. Soils Sediments 8: 406-414. https://doi.org/10.1007/s11368-008-0047-8

Cited by

  1. Spatial Patterns of Methane Oxidation and Methanotrophic Diversity in Landfill Cover Soils of Southern China vol.25, pp.4, 2013, https://doi.org/10.4014/jmb.1408.08055
  2. Microbial Abundance and Activity in Biochar-Amended Landfill Cover Soils: Evidence from Large-Scale Column and Field Experiments vol.143, pp.9, 2017, https://doi.org/10.1061/(asce)ee.1943-7870.0001254
  3. Effect of temperature on methane oxidation and community composition in landfill cover soil vol.46, pp.9, 2013, https://doi.org/10.1007/s10295-019-02217-y
  4. Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology vol.8, pp.2, 2013, https://doi.org/10.3390/environments8020016