DOI QR코드

DOI QR Code

De Novo Assembly and Comparative Analysis of the Enterococcus faecalis Genome (KACC 91532) from a Korean Neonate

  • Ham, Jun Sang (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kwak, Woori (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Chang, Oun Ki (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Han, Gi Sung (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Jeong, Seok Geun (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Seol, Kuk Hwan (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Hyoun Wook (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kang, Geun Ho (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Beom Young (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, Hyun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Jong Geun (Forage and Grassland Division, National Institutue of Animal Science, Rural Development Adminstration) ;
  • Kim, Kyu-Won (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Sung, Samsun (C&K Genomics) ;
  • Lee, Taeheon (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration) ;
  • Cho, Seoae (C&K Genomics) ;
  • Kim, Heebal (Interdisciplinary Program in Bioinformatics, Seoul National University)
  • Received : 2013.03.13
  • Accepted : 2013.05.15
  • Published : 2013.07.28

Abstract

Using a newly constructed de novo assembly pipeline, finished genome level assembly had been conducted for the probiotic candidate strain E. faecalis KACC 91532 isolated from a stool samples of Korean neonates. Our gene prediction identified 3,061 genes in the assembled genome of the strain. Among these, nine genes were specific only for the E. faecalis KACC 91532, compared with all of the four known reference genomes (EF62, D32, V583, OG1RF). We identified genes related to phenotypic characters and detected E. faecalis KACC 91532-specific evolutionarily accelerated genes using dN/dS analysis. From these results, we found the potential risk of KACC 91532 as a useful probiotic strain and identified some candidate genetic variations that could affect the function of enzymes.

Keywords

References

  1. Alekshun MN, Levy SB. 2007. Molecular mechanisms of antibacterial multidrug resistance. Cell 128: 1037-1050. https://doi.org/10.1016/j.cell.2007.03.004
  2. Andrews S. 2012. FastQC. A quality control tool for high throughput sequence data. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc.
  3. Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  4. Baronets NG. 2003. Vitamin K as a stimulator of microbial growth. Zh. Mikrobiol. Epidemiol. Immunobiol. 4: 104-105 [In Russian].
  5. Cariolato D, Andrighetto C, Lombardi A. 2008. Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 19: 886-892. https://doi.org/10.1016/j.foodcont.2007.08.019
  6. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. 2009. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119-120. https://doi.org/10.1093/bioinformatics/btn578
  7. Castillo-Davis C, Kondrashov F, Hartl D, Kulathinal R. 2004. The functional genomic distribution of protein divergence in two animal phyla: coevolution, genomic conflict, and constraint. Genome Res. 14: 802-811. https://doi.org/10.1101/gr.2195604
  8. Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  9. Chaisson MJ, Pevzner PA. 2008. Short read fragment assembly of bacterial genomes. Genome Res. 18: 324-330. https://doi.org/10.1101/gr.7088808
  10. Chow J, Thal L, Perri M, Vazquez J, Donabedian S, Clewell D, et al. 1993. Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 37: 2474-2477. https://doi.org/10.1128/AAC.37.11.2474
  11. Chung JW, Bensing BA, Dunny GM. 1995. Genetic analysis of a region of the Enterococcus faecalis plasmid pCF10 involved in positive regulation of conjugative transfer functions. J. Bacteriol. 177: 2107-2117.
  12. Eaton TJ, Gasson MJ. 2001. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 67: 1628-1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001
  13. Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, et al. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 102: 11064-11069. https://doi.org/10.1073/pnas.0504930102
  14. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108: 1513-1518. https://doi.org/10.1073/pnas.1017351108
  15. Gordon A, Hannon G. 2010. Fastx-toolkit : FASTQ/A shortreads pre-processing tools http://hannonlab.cshl.edu/fastx_toolkit.
  16. Hall T. 2005. Bioedit version 7.0. 4. Department of Microbiology, North Carolina State University
  17. Hancock LE, Gilmore MS. 2006. Pathogenicity of enterococci, pp. 299-311. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (eds.). Gram-positive Organisms. ASM Press, Washington, DC.
  18. Kim MK, Choi A, Han GS, Jeong SG, Chae HS, Jang A, et al. 2011. Development of probiotic dairy product for the normalization of microbial flora in Korean infants. Korean J. Food Sci. Anim. Resour. 31: 290-295. https://doi.org/10.5851/kosfa.2011.31.2.290
  19. Loytynoja A, Goldman N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. USA 102: 10557. https://doi.org/10.1073/pnas.0409137102
  20. Lempiainen H, Kinnunen K, Mertanen A, Wright A. 2005. Occurrence of virulence factors among human intestinal enterococcal isolates. Lett. Appl. Microbiol. 41: 341-344. https://doi.org/10.1111/j.1472-765X.2005.01769.x
  21. Li R. 2009. Short oligonucleotide analysis package: SOAPdenovo 1.03. Beijing Genomics Institute, Beijing.
  22. Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, et al. 2012. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat. Rev. Microbiol. 10: 599-606. https://doi.org/10.1038/nrmicro2850
  23. Lomovskaya O, Watkins W. 2001. Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotechnol. 3: 225-236.
  24. Martin R, Jimenez E, Olivares M, Marin M, Fernandez L, Xaus J, et al. 2006. Lactobacillus salivarius ECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int. J. Food Microbiol. 112: 35-43. https://doi.org/10.1016/j.ijfoodmicro.2006.06.011
  25. Mercenier A, Pavan S, Pot B. 2003. Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr. Pharmaceut. Des. 9: 175-191. https://doi.org/10.2174/1381612033392224
  26. Nadalin F, Vezzi F, Policriti A. 2012. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13: S8.
  27. Ochman H, Moran NA. 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292: 1096-1099. https://doi.org/10.1126/science.1058543
  28. Pavlova S, Kilic A, Kilic S, So JS, Nader-Macias M, Simoes J, et al. 2002. Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J. Appl. Microbiol. 92: 451-459. https://doi.org/10.1046/j.1365-2672.2002.01547.x
  29. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, et al. 2007. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet. 39: 839-847. https://doi.org/10.1038/ng2053
  30. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511-521. https://doi.org/10.1542/peds.2005-2824
  31. PLOTREE D, D PLOTGRAM. 1989. PHYLIP-phylogeny inference package (version 3.2).
  32. Reuven NB, Zhou Z, Deutscher MP. 1997. Functional overlap of tRNA nucleotidyltransferase, poly (A) polymerase I, and polynucleotide phosphorylase. J. Biol. Chem. 272: 33255-33259. https://doi.org/10.1074/jbc.272.52.33255
  33. Ryan KJ, Ray CG. 2010. Sherris Medical Microbiology. McGraw Hill Medical.
  34. S alzberg S L, P hillippy A M, Z imin A , Puiu D, Magoc T, Koren S, et al. 2012. GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res. 22: 557-567. https://doi.org/10.1101/gr.131383.111
  35. S alzberg S L, S ommer D D, P uiu D, L ee V T. 2008. G eneboosted assembly of a novel bacterial genome from very short reads. PLoS Comput. Biol. 4: e1000186. https://doi.org/10.1371/journal.pcbi.1000186
  36. Sarkar S. 2008. Effect of probiotics on biotechnological characteristics of yoghurt: a review. Br. Food J. 110: 717-740. https://doi.org/10.1108/00070700810887185
  37. Schlievert PM, Gahr PJ, Assimacopoulos AP, Dinges MM, Stoehr JA, Harmala JW, et al. 1998. Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect. Immun. 66: 218-223.
  38. Schmidt HA, Strimmer K, Vingron M, Von Haeseler A. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502-504. https://doi.org/10.1093/bioinformatics/18.3.502
  39. Solheim M, Aakra A, Snipen LG, Brede DA, Nes IF. 2009. Comparative genomics of Enterococcus faecalis from healthy Norwegian infants. BMC Genomics 10: 194. https://doi.org/10.1186/1471-2164-10-194
  40. Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH. 2000. Cn3D: sequence and structure views for Entrez. Trends Biochem. Sci. 25: 300. https://doi.org/10.1016/S0968-0004(00)01561-9
  41. Wikler MA. 2006. Performance standards for antimicrobial susceptibility testing: sixteenth informational supplement. Clinical and Laboratory Standards Institute.
  42. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591. https://doi.org/10.1093/molbev/msm088

Cited by

  1. Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages vol.38, pp.1, 2013, https://doi.org/10.5851/kosfa.2018.38.1.189