DOI QR코드

DOI QR Code

Isolation and Biochemical Characterization of Bacillus pumilus Lipases from the Antarctic

  • Received : 2012.12.18
  • Accepted : 2013.01.18
  • Published : 2013.05.28

Abstract

Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be $40^{\circ}C$ and pH 9. Lipase BPL1 and lipase BPL2 were stable up to $30^{\circ}C$, whereas lipase BPL3 was stable up to $20^{\circ}C$. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward p-nitrophenyl caprylate ($C_8$). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and medium-chain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.

Keywords

References

  1. Akbulut, N., M. T. Ozturk, T. Pijning, S. I. Ozturk, and F. Gumu el. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. J. Biotechnol. DOI: 10.1016/j.jbiotec.2012.12.016.
  2. Alquati, C., L. De Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321-3328. https://doi.org/10.1046/j.1432-1033.2002.03012.x
  3. Arpigny, J. L., G. Feller, and C. Gerday. 1993. Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim. Biophys. Acta 1171: 331-333. https://doi.org/10.1016/0167-4781(93)90078-R
  4. Bell, P. J., A. Sunna, M. D. Gibbs, N. C. Curach, H. Nevalainen, and P. L. Bergquist. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283-2291.
  5. Bustos-Jaimes, I., R. Mora-Lugo, M. L. Calcagno, and A. Farres. 2010. Kinetic studies of Gly28:Ser mutant form of Bacillus pumilus lipase: Changes in k(cat) and thermal dependence. Biochim. Biophys. Acta 1804: 2222-2227. https://doi.org/10.1016/j.bbapap.2010.09.001
  6. Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
  7. Feller, G., M. Thiry, J. L. Arpigny, and C. Gerday. 1991. Cloning and expression in Escherichia coli of three lipaseencoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102: 111-115. https://doi.org/10.1016/0378-1119(91)90548-P
  8. Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, et al. 2000. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol. 18: 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4
  9. Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
  10. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  11. Joseph, B., P. W. Ramteke, and G. Thomas. 2008. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv. 26: 457-470. https://doi.org/10.1016/j.biotechadv.2008.05.003
  12. Karl, D. M., D. F. Bird, K. Bjorkman, T. Houlihan, R. Shackelford, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286: 2144-2147. https://doi.org/10.1126/science.286.5447.2144
  13. Kim, H. K., H. J. Choi, M. H. Kim, C. B. Sohn, and T. K. Oh. 2002. Expression and characterization of Ca(2+)-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212. https://doi.org/10.1016/S1388-1981(02)00214-7
  14. Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  16. Ma, J., Z. Zhang, B. Wang, X. Kong, Y. Wang, S. Cao, and Y. Feng. 2006. Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr. Purif. 45: 22-29. https://doi.org/10.1016/j.pep.2005.06.004
  17. Meyer, T. E., M. A. Cusanovich, and M. D. Kamen. 1986. Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc. Natl. Acad. Sci. USA 83: 217-220. https://doi.org/10.1073/pnas.83.2.217
  18. Nthangeni, M. B., H. Patterton, A. van Tonder, W. P. Vergeer, and D. Litthauer. 2001. Over-expression and properties of a purified recombinant Bacillus licheniformis lipase: A comparative report on Bacillus lipases. Enzyme Microb. Technol. 28: 705-712. https://doi.org/10.1016/S0141-0229(01)00316-7
  19. Priscu, J. C., E. E. Adams, W. B. Lyons, M. A. Voytek, D. W. Mogk, R. L. Brown, et al. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286: 2141-2144. https://doi.org/10.1126/science.286.5447.2141
  20. Rashid, N., Y. Shimada, S. Ezaki, H. Atomi, and T. Imanaka. 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069. https://doi.org/10.1128/AEM.67.9.4064-4069.2001
  21. Rasool, S., S. Johri, S. Riyaz-ul-Hassan, Q. U. Maqbool, V. Verma, S. Koul, et al. Molecular cloning of enantioselective ester hydrolase from Bacillus pumilus DBRL-191. FEMS Microbiol. Lett. 249: 113-120.
  22. Reetz, M. T. 2002. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6: 145-150. https://doi.org/10.1016/S1367-5931(02)00297-1
  23. Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng. 92: 144-148. https://doi.org/10.1016/S1389-1723(01)80215-2
  24. Tanaka, D., S. Yoneda, Y. Yamashiro, A. Sakatoku, T. Kayashima, K. Yamakawa, and S. Nakamura. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168: 327-338. https://doi.org/10.1007/s12010-012-9776-7
  25. Zhang, J., S. Lin, and R. Zeng. 2007. Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J. Microbiol. Biotechnol. 17: 604-610.

Cited by

  1. Expression and Biochemical Characterization of Cold-Adapted Lipases from Antarctic Bacillus pumilus Strains vol.23, pp.9, 2013, https://doi.org/10.4014/jmb.1305.05006
  2. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus vol.36, pp.6, 2013, https://doi.org/10.1007/s10529-014-1475-8
  3. Enhancing Extracellular Lipolytic Enzyme Production In An Arctic Bacterium,Psychrobactersp. ArcL13, By Using Statistical Optimization And Fed-Batch Fermentation vol.45, pp.4, 2015, https://doi.org/10.1080/10826068.2014.940964
  4. Characterizing LipR from Pseudomonas sp. R0-14 and Applying in Enrichment of Polyunsaturated Fatty Acids from Algal Oil vol.25, pp.11, 2013, https://doi.org/10.4014/jmb.1506.06011
  5. Enzymes from Marine Polar Regions and Their Biotechnological Applications vol.17, pp.10, 2013, https://doi.org/10.3390/md17100544