Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12040

Isolation and Biochemical Characterization of Bacillus pumilus Lipases from the Antarctic  

Arifin, Arild Ranlym (Division of Biotechnology, The Catholic University of Korea)
Kim, Soon-Ja (Division of Biotechnology, The Catholic University of Korea)
Yim, Joung Han (Korea Polar Research Institute)
Suwanto, Antonius (Faculty of Biotechnology, Atma Jaya Catholic University)
Kim, Hyung Kwoun (Division of Biotechnology, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.5, 2013 , pp. 661-667 More about this Journal
Abstract
Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be $40^{\circ}C$ and pH 9. Lipase BPL1 and lipase BPL2 were stable up to $30^{\circ}C$, whereas lipase BPL3 was stable up to $20^{\circ}C$. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward p-nitrophenyl caprylate ($C_8$). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and medium-chain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries.
Keywords
Bacillus pumilus; lipase; Antarctic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
2 Akbulut, N., M. T. Ozturk, T. Pijning, S. I. Ozturk, and F. Gumu el. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. J. Biotechnol. DOI: 10.1016/j.jbiotec.2012.12.016.
3 Alquati, C., L. De Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321-3328.   DOI   ScienceOn
4 Arpigny, J. L., G. Feller, and C. Gerday. 1993. Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim. Biophys. Acta 1171: 331-333.   DOI   ScienceOn
5 Bell, P. J., A. Sunna, M. D. Gibbs, N. C. Curach, H. Nevalainen, and P. L. Bergquist. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283-2291.
6 Bustos-Jaimes, I., R. Mora-Lugo, M. L. Calcagno, and A. Farres. 2010. Kinetic studies of Gly28:Ser mutant form of Bacillus pumilus lipase: Changes in k(cat) and thermal dependence. Biochim. Biophys. Acta 1804: 2222-2227.   DOI   ScienceOn
7 Feller, G., M. Thiry, J. L. Arpigny, and C. Gerday. 1991. Cloning and expression in Escherichia coli of three lipaseencoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102: 111-115.   DOI   ScienceOn
8 Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, et al. 2000. Cold-adapted enzymes: From fundamentals to biotechnology. Trends Biotechnol. 18: 103-107.   DOI   ScienceOn
9 Gupta, R., N. Gupta, and P. Rathi. 2004. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781.   DOI   ScienceOn
10 Kim, H. K., H. J. Choi, M. H. Kim, C. B. Sohn, and T. K. Oh. 2002. Expression and characterization of Ca(2+)-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212.   DOI   ScienceOn
11 Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351.   DOI   ScienceOn
12 Joseph, B., P. W. Ramteke, and G. Thomas. 2008. Cold active microbial lipases: Some hot issues and recent developments. Biotechnol. Adv. 26: 457-470.   DOI   ScienceOn
13 Karl, D. M., D. F. Bird, K. Bjorkman, T. Houlihan, R. Shackelford, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286: 2144-2147.   DOI   ScienceOn
14 Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004. Cold-active esterase from Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65.   DOI   ScienceOn
15 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
16 Ma, J., Z. Zhang, B. Wang, X. Kong, Y. Wang, S. Cao, and Y. Feng. 2006. Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr. Purif. 45: 22-29.   DOI   ScienceOn
17 Meyer, T. E., M. A. Cusanovich, and M. D. Kamen. 1986. Evidence against use of bacterial amino acid sequence data for construction of all-inclusive phylogenetic trees. Proc. Natl. Acad. Sci. USA 83: 217-220.   DOI   ScienceOn
18 Rasool, S., S. Johri, S. Riyaz-ul-Hassan, Q. U. Maqbool, V. Verma, S. Koul, et al. Molecular cloning of enantioselective ester hydrolase from Bacillus pumilus DBRL-191. FEMS Microbiol. Lett. 249: 113-120.
19 Nthangeni, M. B., H. Patterton, A. van Tonder, W. P. Vergeer, and D. Litthauer. 2001. Over-expression and properties of a purified recombinant Bacillus licheniformis lipase: A comparative report on Bacillus lipases. Enzyme Microb. Technol. 28: 705-712.   DOI   ScienceOn
20 Priscu, J. C., E. E. Adams, W. B. Lyons, M. A. Voytek, D. W. Mogk, R. L. Brown, et al. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286: 2141-2144.   DOI   ScienceOn
21 Rashid, N., Y. Shimada, S. Ezaki, H. Atomi, and T. Imanaka. 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67: 4064-4069.   DOI   ScienceOn
22 Reetz, M. T. 2002. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6: 145-150.   DOI   ScienceOn
23 Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng. 92: 144-148.   DOI   ScienceOn
24 Tanaka, D., S. Yoneda, Y. Yamashiro, A. Sakatoku, T. Kayashima, K. Yamakawa, and S. Nakamura. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168: 327-338.   DOI   ScienceOn
25 Zhang, J., S. Lin, and R. Zeng. 2007. Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J. Microbiol. Biotechnol. 17: 604-610.