References
- Abdulaev, N. G., M. P. Popp, M. P., W. C. Smith, and K. D. Ridger. 1997. Functional expression of bovine opsin in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 10: 61-69. https://doi.org/10.1006/prep.1996.0704
- Andre, N., N. Cherouati, C. Prual, T. Steffan, G. Zeder-Lutz, T. Magnin, et al. 2006. Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci. 15: 1115-1126. https://doi.org/10.1110/ps.062098206
- Alisio, A. and M. Mueckler. 2010. Purification and characterization of mammalian glucose transporters expressed in Pichia pastoris. Protein Expr. Purif. 70: 81-87. https://doi.org/10.1016/j.pep.2009.10.011
- Asada, H., T. Uemura, T. Yurugi-Kobayashi, M. Shiroishi, T. Shimamura, H. Tsujimoto, et al. 2011. Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microb. Cell Fact. 10: 24. https://doi.org/10.1186/1475-2859-10-24
- Barnard, G. C., A. R. Kull, N. S. Sharkey, S. S. Shaikh, A. M. Rittenhour, I. Burnina, et al. 2010. High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J. Ind. Microbiol. Biotechnol. 37: 961-971. https://doi.org/10.1007/s10295-010-0746-1
- Baumann K., M. Maurer, M. Dragosits, O. Cos, P. Ferrer, and D. Mattanovich. 2008. Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol. Bioeng. 100: 177-183. https://doi.org/10.1002/bit.21763
- Bornet, O., F. Alkhalfioui, C. Logez, and R. Wagner. 2012. Overexpression of membrane proteins using Pichia pastoris. Curr. Prot. Protein Sci. DOI: 10.1002/0471140864.ps2902s67.
- Brady, C. P., R. L. Shimp, A. P. Miles, M. Whitmore, and A. W. Stowers. 2001. High-level production and purification of P30P2MSP1(19), an important vaccine antigen for malaria, expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 23: 468-475. https://doi.org/10.1006/prep.2001.1526
- Brierley, R. 1998. Secretion of recombinant human insulin-like growth factor I (IGF-1). Pichia Protocols 103: 149-177. https://doi.org/10.1385/0-89603-421-6:149
- Brierley, R. A., C. Bussineau, R. Kosson, A. Melton, and R. S. Sieger. 1990. Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: Bovine lysozyme. Ann. N.Y. Acad. Sci. 589: 350-362. https://doi.org/10.1111/j.1749-6632.1990.tb24257.x
- Celik, E. and P. Calik. 2011. Production of recombinant proteins by yeast cells. Biotechnol. Adv. 142: 105-124.
- Celik, E., P. Calik, and S. G. Oliver. 2009. Fedbatch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast 92: 473-484.
- Cereghino, G. P., J. L. Cereghino, C. Ilgen, and J. M. Cregg. 2002. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotech. 13: 329-332. https://doi.org/10.1016/S0958-1669(02)00330-0
- Cereghino, G. P., J. L., Cereghino, and A. Sunga. 2001. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene 263: 159-169. https://doi.org/10.1016/S0378-1119(00)00576-X
- Cereghino, G. P. and J. M. Cregg. 1999. Applications of yeast in biotechnology: Protein production and genetic analysis. Curr. Opin. Biotechnol. 10: 422-427. https://doi.org/10.1016/S0958-1669(99)00004-X
- Cereghino, J. L. and J. M. Cregg. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24: 45-66. https://doi.org/10.1111/j.1574-6976.2000.tb00532.x
- Chung, B. H. and K. S. Park. 1997. Simple approach to reducing proteolysis during secretory production of human parathyroid hormone in Saccharomyces cerevisiae. Biotechnol. Bioeng. 57: 245-249.
- Craveiro, R. B., J. D., Ramalho, J. R. Chagas, P. H. M. Wang, D. E. Casarini, J. L. Pesquero, et al. 2006. High expression of human carboxypeptidase M in Pichia pastoris: Purification and partial characterization. Braz. J. Med. Biol. Res. 39: 211-217. https://doi.org/10.1590/S0100-879X2006000200007
- Cregg, J. M. and K. R. Madden. 1987. Development of yeast transformation systems and construction of methanol-utilizationdefective mutants of Pichia pastoris by gene disruption. Biol. Res. Ind. Yeast 2: 1-18.
- Cregg, J. M., J. L. Cereghino, S. Jianying, and D. Higgins. 2000. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16: 23-52. https://doi.org/10.1385/MB:16:1:23
- Cregg, J. M., K. J. Barringer, A. Y. Hessler, and K. R. Madden. 1985. Pichia pastoris as a host system for transformations. Mol. Cell. Biol. 5: 3376-3385.
- Daly, R. and M. T. W. Hearn. 2005. Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineering and production. J. Mol. Recognit. 18: 119-138. https://doi.org/10.1002/jmr.687
- D'Anjou, M. C. and A. J. Daugulis. 2000. Mixed-feed exponential feeding for fed-batch culture of recombinant methylotrophic yeast. Biotechnol. Lett. 22: 341-346. https://doi.org/10.1023/A:1005612415737
- D'Anjou, M. C. and A. J. Daugulis. 2001. A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol. Bioeng. 72: 1-11. https://doi.org/10.1002/1097-0290(20010105)72:1<1::AID-BIT1>3.0.CO;2-T
- Damasceno, L. M., I. Pla, H. J. Chang, L. Cohen, G. Ritter, L. J. Old, and C. A. Batt. 2004. An optimized fermentation process for high-level production of single-chain Fv antibody fragment in Pichia pastoris. Protein Expr. Purif. 37: 18-26. https://doi.org/10.1016/j.pep.2004.03.019
- Damasceno, L. M., C. J. Huang, and C. Batt. 2012. Protein secretion in Pichia pastoris and advances in protein production. Appl. Microbiol. Biotechnol. 93: 31-39. https://doi.org/10.1007/s00253-011-3654-z
- Demain, A. and P. Vaishnav. 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27: 297-306. https://doi.org/10.1016/j.biotechadv.2009.01.008
- De Rivoyre, D., F. Bonino, L. Ruel, M. Bidet, P. Therond, and I. Mus-Veteau. 1996. Human receptor Smoothened, a mediator of Hedgehog signalling, expressed in its native conformation in yeast. FEBS Lett. 579: 1529-1533.
- Dietzsch, C., O. Spadiut, and C. Herwig. 2011. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains. Microb. Cell Fact. 10: 85. https://doi.org/10.1186/1475-2859-10-85
- Dietzsch, C., O. Spadiut, and C. Herwig. 2011. A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris. Microb. Cell Fact. 10: 14. https://doi.org/10.1186/1475-2859-10-14
- Domingez, A., E. Ferminan, M. Sanchez, F. J. Gonzalez, F. M. Perez-Campo, S. Garcia, et al. 1998. Non-conventional yeast as hosts for heterologous protein production. Int. Microbiol. 1: 131-142.
- Dragosits, M., J. Stadlmann, J. Albiol, K. Baumann, M. Maurer, B. Gasser, et al. 2009. The effect of temperature on the proteome of recombinant Pichia pastoris. Analysis 8: 1380-1392.
- Eldin, P., M. E. Pauza, Y. Hieda, G. Lin, M. P. Murtaugh, P. R. Pentel, and C. A. Pennell. 1997. High-level secretion of two antibody single chain Fv fragments by Pichia pastoris. J. Immunol. Methods 201: 67-75. https://doi.org/10.1016/S0022-1759(96)00213-X
- Faber, K., W. Harder, G. Ab, and M. Veenhuis. 1995. Review: Methylotrophic yeast as factories for the production of foreign proteins. Yeast 11: 1331-1344. https://doi.org/10.1002/yea.320111402
- Fan, Y., L. Shi, V. Ladizhansky, and L. S. Brown. 2011. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J. Biomol. NMR 49: 151-161. https://doi.org/10.1007/s10858-011-9473-9
- Gellissen, G. 2000. Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54: 741-750. https://doi.org/10.1007/s002530000464
- Ghosalkar, A., V. Sahai, and A. Srivastava. 2008. Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresour. Technol. 99: 7906-7910. https://doi.org/10.1016/j.biortech.2008.01.059
- Gleeson, M. A., C. White, D. P. Meininger, and E. A. Komives. 1998. Generation of protease-deficient strains and their use in heterologous protein expression. Methods Mol. Biol. 103: 81-94.
- Goel, A., D. Colcher, J. Baranowska-Kortylewicz, S. Augustine, B. J. M. Booth, G. Pavlinkova, and S. K. Batra. 2000. Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: Improved biodistribution and potential for therapeutic application. Cancer Res. 60: 6964-6971.
- Ha, S., Y. Wang, and R. R. Rustandi. 2011. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. MAbs 3: 453-460. https://doi.org/10.4161/mabs.3.5.16891
- Hamilton, S. R. and T. U. Tilman. 2007. Glycosylation engineering in yeast: The advent of fully humanized yeast. Curr. Opin. Biotechnol. 18: 387-392. https://doi.org/10.1016/j.copbio.2007.09.001
- Hellwing, S., F. Emde, N. Raven, M. Henke, P. Van der Long, and R. Fischer. 2000. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol. Bioeng. 74: 344-352.
- Hohenblum, H., N. Borth, and D. Mattanovich. 2003. Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J. Biotechnol. 102: 281-290. https://doi.org/10.1016/S0168-1656(03)00049-X
- Huang, C. J., L. M. Damasceno, K. A. Anderson, S. Zhang, L. J. Old, and C. A. Batt. 2011. A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Genomics Transcriptomics Proteomics 90: 235-247.
- Idiris, A., H. Tohda, H. Kumagai, and K. Takegawa. 2010. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl. Microbiol. Biotechnol. 86: 403-417. https://doi.org/10.1007/s00253-010-2447-0
- Issaly, N., O. Solsona, P. Joudrier, M. F. Gautier, G. Moulin, and H. Boze. 2001. Optimization of the wheat puroindoline-a production in Pichia pastoris. J. Appl. Microbiol. 90: 397-406. https://doi.org/10.1046/j.1365-2672.2001.01259.x
- Jafari, R., B. E. Sundstrom, and P. Holm. 2011. Optimization of production of the anti-keratin 8 single-chain Fv TS1-218 in Pichia pastoris using design of experiments. Microb. Cell Fact. 10: 34. https://doi.org/10.1186/1475-2859-10-34
- Jeong, K.J., S. H. Jang, and N. Velmurugan. 2011. Recombinant antibodies: Engineering and production in yeast and bacterial hosts. Biotechnol. J. 6: 16-27. https://doi.org/10.1002/biot.201000381
- Jiang, Y., F. Li, D. Zha, T. I. Potgieter, T. Mitchell, R. Moore, et al. 2011. Purification process development of a recombinant monoclonal antibody expressed in glycoengineered Pichia pastoris. Protein Expr. Purif. 76: 7-14. https://doi.org/10.1016/j.pep.2010.11.004
- Kato, S., M. Ishibashi, D. Tatsuda, H. Tokunaga, and M. Tokunaga. 2001. Efficient expression, purification and characterization of mouse salivary a-amylase secreted from methylotrophic yeast, Pichia pastoris. Yeast 18: 643-655. https://doi.org/10.1002/yea.714
- Kottmeier, K., K. Ostermann, T. Bley, and G. Rodel. 2011. Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl. Microbiol. Biotechnol. 91: 133-141. https://doi.org/10.1007/s00253-011-3246-y
- Li, P., A. Anumanthan, X. G. Gao, K. Ilangovan, V. V. Suzara, N. Duzgune , and V. Renugopalakrishnan. 2007. Expression of recombinant proteins in Pichia pastoris. Appl. Biochem. Biotechnol. 142: 105-124. https://doi.org/10.1007/s12010-007-0003-x
- Li, T., J. Cheng, B. Hu, Y. Liu, G. Quian, and F. Liu. 2008. Construction, production, and characterization of recombinant scFv antibodies against methamidophos expressed in Pichia pastoris. World J. Microbiol. Biotechnol. 24: 867-874. https://doi.org/10.1007/s11274-007-9554-9
- Li, H. and M. d'Anjou. 2009. Pharmacological significance of glycosylation in the therapeutic proteins. Curr. Opin. Biotechnol. 20: 678-684. https://doi.org/10.1016/j.copbio.2009.10.009
- Li, Z. J., F. Xiong, Q. Lin, M. d'Anjou, A. J. Daugulis, D. S. Yang, and C. L. Hew. 2001. Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr. Purif. 21: 483-445.
- Lin, H., T. Kim, F. Xiong, and X. Yang. 2007. Enhancing the production of Fc fusion protein in fed-batch fermentation of Pichia pastoris by design of experiments. Biotechnol. Prog. 23: 621-625.
- Macauley-Patrick, S., L. M. Fazenda, B. McNeil, and L. M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270. https://doi.org/10.1002/yea.1208
- Minning, S., A. Serrano, P. Ferrer, C. Sola, R. D. Schmid, and F. Valero. 2001. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J. Biotechnol. 86: 59-70. https://doi.org/10.1016/S0168-1656(00)00402-8
- Müller, K. M., K. M. Arndt, K. Bauer, and A. Plückthun. 1998. Tandem immobilized metal-ion affinity chromatography/ immunoaffinity purification of His-tagged proteins - evaluation of two anti-His-tag monoclonal antibodies. Anal. Biochem. 259: 54-61. https://doi.org/10.1006/abio.1998.2606
- Murasugi, A., Y. Asami, and M. Mera-Kikuchi. 2001. Production of recombinant human bile salt-stimulated lipase in Pichia pastoris. Protein Expr. Purif. 23: 282-288. https://doi.org/10.1006/prep.2001.1509
- Oehler, R., G. Lesnicki, and M. Galleno. 1998. High cell density fermentation of Pichia pastoris using nonphosphate precipitate forming sodium hexametaphosphate as a phosphate source. Current topics in gene expression annual meeting. SanDiego, CA, USA
- Ogunijimi, A., J. Chandler, C. Gooding, A. Recinos, and P. Choudary. 1999. High-level secretory expression of immunologically active intact antibody from yeast Pichia pastoris. Biotechnol. Lett. 21: 561-567. https://doi.org/10.1023/A:1005542011387
- Paifer, E., E. Margolles, J. Cremata, R. Montesino, L. Herera, and J. M. Delgado. 1994. Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast 10: 1415-1419. https://doi.org/10.1002/yea.320101104
- Panjideh, H., V. Coelho, J. Dernedde, H. Fuchs, U. Keilholz, E. Thiel, and P. M. Deckert. 2008. Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants. Bioprocess Biosyst. Eng. 31: 559-568. https://doi.org/10.1007/s00449-008-0203-y
- Plantz, B. A., K. Nickerson, S. D. Kachman, and V. L. Schlegel. 2007. Evaluation of metals in a defined medium for Pichia pastoris expressing recombinant beta-galactosidase. Biotechnol. Prog. 23: 687-692.
- Porro, D., B. Gasser, T. Fossati, M. Maurer, P. Branduardi, M. Sauer, and D. Mattanovich. 2011. Production of recombinant proteins and metabolites in yeasts: When are these systems better than bacterial production systems? Appl. Microbiol. Biotechnol. 89: 939-948. https://doi.org/10.1007/s00253-010-3019-z
- Potgieter, T. I., M. Cukan, J. E. Drummond, N. R. Houston-Cummings, Y. Jiang, F. Li, et al. 2009. Production of monoclonal antibodies by glycoengineered Pichia pastoris. J. Biotechnol. 139: 318-325. https://doi.org/10.1016/j.jbiotec.2008.12.015
- Powers, D. B., P. Amersdorfer, M. Poul, U. S. Nielsen, M. R. Shalaby, G. P. Adams, et al. 2001. Expression of single-chain Fv-Fc fusions in Pichia pastoris. J. Immunol. Methods 251: 123-135. https://doi.org/10.1016/S0022-1759(00)00290-8
- Raman, P., V. Cherezov, and M. Caffrey. 2006. The membrane protein data bank. Cell. Mol. Life Sci. 63: 36-51. https://doi.org/10.1007/s00018-005-5350-6
- Ramon, A. and M. Marin. 2011. Advances in the production of membrane proteins in Pichia pastoris. Biotechnol. J. 6: 700-706. https://doi.org/10.1002/biot.201100146
- Roque, A. C., C. R. Lowe, and M. A. Taipa. 2004. Antibodies and genetically engineered related molecules: Production and purification. Biotechnol. Progr. 20: 639-654. https://doi.org/10.1021/bp030070k
- Routledge, S. J., C. J. Hewitt, N. Bora, and R. M. Bill. 2011. Antifoam addition to shake flask cultures of recombinant Pichia pastoris increases yield. Microb. Cell Fact. 10: 17. https://doi.org/10.1186/1475-2859-10-17
- Sarramegna, V., I. Muller, G. Mousseau, C. Froment, B. Monsarrat, A. Milon, and F. Talmont. 2005. Solubilization, purification, and mass spectrometry analysis of the human muopioid receptor expressed in Pichia pastoris. Protein Expr. Purif. 43: 85-93. https://doi.org/10.1016/j.pep.2005.05.007
- Shi, X., T. Karbut, M. Chamankhah, M. Alting-Mees, S. M. Hemmingsen, and D. Hegedus. 2003. Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr. Purif. 28: 321-330. https://doi.org/10.1016/S1046-5928(02)00706-4
- Shepard, S., C. Stone, S. Cook, A. Bouvier, G. Boyd, G. Weatherly, et al. 2002. Recovery of intracellular recombinant proteins from the yeast Pichia pastoris by cell permeabilization. J. Biotechnol. 99: 149-160. https://doi.org/10.1016/S0168-1656(02)00182-7
- Sinha, J., B. A. Plantz, M. Inan, and M. M. Meagher. 2005. Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: Case study with recombinant ovine interferon-tau. Biotechnol. Bioeng. 89: 102-112. https://doi.org/10.1002/bit.20318
- Stratton, J., V. Chiruvolu, and M. Meagher. 1998. High celldensity fermentation. Biotechnol. Adv. 103: 107-120.
- Tolner, B., L. Smith, R. H. Begent, and K. A. Chester. 2006. Production of recombinant protein in Pichia pastoris by fermentation. Nat. Protoc. 1: 1006-1021. https://doi.org/10.1038/nprot.2006.126
- Tschopp, J. F., P. F. Brust, J. M. Cregg, C. A. Stillman, and T. R. Gingeras. 1987. Expression of the LacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 15: 3859-3876. https://doi.org/10.1093/nar/15.9.3859
- Tsujikawa, M., K. Okabayashi, M. Morita, and T. Tanabe. 1993. Secretion of a variant of human single-chain urokinase-type plasminogen activator without an N-glycosylation site in the methylotrophic yeast, Pichia pastoris and characterization of the secreted product. Yeast 12: 541-553.
- Wegner, G. 1990. Emerging applications of the methylotrophic yeast. FEMS Microbiol. Rev. 7: 279-283.
- White, C. E., M. J. Hunter, D. P. Meininger, L. R. White, and E. A. Komives. 1995. Large-scale expression, purification and characterization of small fragments of thrombomodulin - the role of sixth domain and methionine 388. Protein Eng. Des. Sel. 8: 1177-1187. https://doi.org/10.1093/protein/8.11.1177
- Wood, M. J. and E. A. Komives. 1999. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J. Biomol. NMR 13: 149-159. https://doi.org/10.1023/A:1008398313350
- Ye, J., J. Ly, K. Watts, A. Hsu, A. Walker, K. McLaughlin, et al. 2011. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol. Prog. 27: 1744-1750. https://doi.org/10.1002/btpr.695
- Yurugi-Kobayashi, T., H. Asada, M. Shiroishi, T. Shimamura, S. Funamoto, N. Katsuta, et al. 2009. Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochem. Biophys. Res. Commun. 380: 271-276. https://doi.org/10.1016/j.bbrc.2009.01.053
- Zhang, W., M. A. Bevins, B. A. Plantz, L. A. Smith, and M. M. Meagher. 2000. Modelling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol. Bioeng. 70: 1-8. https://doi.org/10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y
- Zhang, W., M. Inan, and M. M. Meagher. 2000. Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 5: 275-287. https://doi.org/10.1007/BF02942184
- Zhang, A., J. Luo, T. Zhang, Y. Pan, Y. Tan, C. Fu, and F. Tu. 2009. Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol. Biol. Rep. 36: 1611-1619. https://doi.org/10.1007/s11033-008-9359-4
- Zhang, A. L., T. Y. Zhang, J. X. Luo, S. C. Chen, W. J. Guan, C. Y. Fu, et al. 2007. Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture. J. Ind. Microbiol. Biotechnol. 34: 117-122. https://doi.org/10.1007/s10295-006-0175-3
Cited by
- Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification vol.36, pp.4, 2013, https://doi.org/10.1007/s10529-013-1411-3
- Efficient production of single-chain fragment variable-based N-terminal trimerbodies in Pichia pastoris vol.13, pp.None, 2013, https://doi.org/10.1186/s12934-014-0116-1
- Making recombinant proteins in filamentous fungi- are we expecting too much? vol.5, pp.None, 2014, https://doi.org/10.3389/fmicb.2014.00075
- Dunaliella salina as a novel host for the production of recombinant proteins vol.98, pp.10, 2013, https://doi.org/10.1007/s00253-014-5636-4
- Overexpression of membrane proteins from higher eukaryotes in yeasts vol.98, pp.18, 2013, https://doi.org/10.1007/s00253-014-5948-4
- Towards improved membrane protein production in Pichia pastoris: General and specific transcriptional response to membrane protein overexpression vol.31, pp.6, 2013, https://doi.org/10.1016/j.nbt.2014.02.009
- Advances and needs for endotoxin-free production strains vol.99, pp.22, 2013, https://doi.org/10.1007/s00253-015-6947-9
- Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3 vol.25, pp.6, 2013, https://doi.org/10.4014/jmb.1408.08039
- With great structure comes great functionality: Understanding and emulating spider silk vol.30, pp.1, 2013, https://doi.org/10.1557/jmr.2014.365
- Evaluation of MutS and Mut+ Pichia pastoris Strains for Membrane-Bound Catechol-O-Methyltransferase Biosynthesis vol.175, pp.8, 2013, https://doi.org/10.1007/s12010-015-1551-0
- Production of Influenza Virus HA1 Harboring Native-Like Epitopes by Pichia pastoris vol.179, pp.7, 2013, https://doi.org/10.1007/s12010-016-2064-1
- Development of simple kinetic models and parameter estimation for simulation of recombinant human serum albumin production by Pichia pastoris vol.15, pp.39, 2013, https://doi.org/10.5897/ajb2015.15121
- Biosynthesis and purification of histidine‐tagged human soluble catechol‐O‐methyltransferase vol.91, pp.12, 2013, https://doi.org/10.1002/jctb.4930
- Efficient production of recombinant glycoprotein D of herpes simplex virus type 2 in Pichia pastoris and its protective efficacy against viral challenge in mice vol.162, pp.3, 2017, https://doi.org/10.1007/s00705-016-3154-7
- Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil vol.31, pp.5, 2017, https://doi.org/10.1080/13102818.2017.1359667
- Cellular and molecular effects of yeast probiotics on cancer vol.43, pp.1, 2013, https://doi.org/10.1080/1040841x.2016.1179622
- A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization vol.149, pp.None, 2013, https://doi.org/10.1016/j.pep.2018.03.013
- Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development vol.44, pp.None, 2018, https://doi.org/10.1016/j.nbt.2018.04.006
- Efficient production of secretory Streptomyces clavuligerus β-lactamase inhibitory protein (BLIP) in Pichia pastoris vol.8, pp.1, 2013, https://doi.org/10.1186/s13568-018-0586-3
- Smoothing membrane protein structure determination by initial upstream stage improvements vol.103, pp.14, 2013, https://doi.org/10.1007/s00253-019-09873-1
- Organic Wastes as Feedstocks for Non-Conventional Yeast-Based Bioprocesses vol.7, pp.8, 2013, https://doi.org/10.3390/microorganisms7080229
- Comparative genome‐scale analysis of Pichia pastoris variants informs selection of an optimal base strain vol.117, pp.2, 2013, https://doi.org/10.1002/bit.27209
- Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation vol.9, pp.4, 2013, https://doi.org/10.3390/vaccines9040328
- Optimization of a Recombinant Lectin Production in Pichia pastoris Using Crude Glycerol in a Fed-Batch System vol.9, pp.5, 2013, https://doi.org/10.3390/pr9050876