References
- Abulencia, C. B., D. L. Wyborski, J. A. Garcia, M. Podar, W. Chen, S. H. Chang, et al. 2006. Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl. Environ. Microbiol. 72: 3291-3301. https://doi.org/10.1128/AEM.72.5.3291-3301.2006
- Bowman, J. P. and R. D. McCuaig. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within antarctic continental shelf sediment. Appl. Environ. Microbiol. 69: 2463-2483. https://doi.org/10.1128/AEM.69.5.2463-2483.2003
- Briee, C., D. Moreira, and P. Lopez-Garcia. 2007. Archaeal and bacterial community composition of sediment and plankton from asuboxic freshwater pond. Res. Microbiol. 158: 213-227. https://doi.org/10.1016/j.resmic.2006.12.012
- Briggs, B. R., F. Inagaki, Y. Morono, T. Futagami, C. Huguet, A. Rosell-Mele, et al. 2012. Bacterial dominance in subseafloor sediments characterized by methane hydrates. FEMS Microbiol. Ecol. 81: 88-98. https://doi.org/10.1111/j.1574-6941.2012.01311.x
- Cao, H., Y. Hong, M. Li, and J. Gu. 2011. Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the Western Pacific. Microb. Ecol. 62: 813-823. https://doi.org/10.1007/s00248-011-9901-0
- Chao, A. and T. J. Shen. Program SPADE (Species prediction and diversity estimation). Program and user's guide. Available at http://chao.stat.nthu.edu.tw.
- Colwell, F., A. Schwartz, and B. Briggs. 2011. Microbial community distribution in sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Maine Petrol. Geol. 28: 404-410. https://doi.org/10.1016/j.marpetgeo.2009.12.012
- D'Hondt, S., B. B. Jorgensen, D. J. Miller, A. Batzke, R. Blake, B. A. Cragg, et al. 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306: 2216-2221. https://doi.org/10.1126/science.1101155
- D'Hondt, S., F. Inagaki, T. Ferdelman, B. B. Jorgensen, K. Kato, P. Kemp, et al. 2007. Exploring subseafloor life with the integrated ocean drilling program. Scientific Drilling 5: 26-37.
- Dai, X., H. Zhou, Y. Chen, C. Cai, Y. Zhou, S. Zhou, and L. Qu. 2002. A preliminary study on 16S rDNA diversity of bacteria in the Nansha marine sediment, the South China Sea. Progress Natural Science 12: 479-484.
- DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685-5689. https://doi.org/10.1073/pnas.89.12.5685
- Etter, R. J. and J. F. Grassle. 1992. Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360: 576-578. https://doi.org/10.1038/360576a0
- Fry, J. C., R. J. Parkes, B. A. Cragg, A. J. Weightman, and G. Webster. 2008. Prokaryotic biodiversity and activity in the deep subseafoor biosphere. FEMS Microbiol. Ecol. 66: 181-196. https://doi.org/10.1111/j.1574-6941.2008.00566.x
- Girvan, M. S., J. Bullimore, J. N. Pretty, A. M. Osborn, and A. S. Ball. 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69: 1800-1809. https://doi.org/10.1128/AEM.69.3.1800-1809.2003
- Glatz, R. E., P. W. Lepp, B. B. Ward, and C. A. Francis. 2006. Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology 4: 53-67. https://doi.org/10.1111/j.1472-4669.2006.00057.x
- Huneke, H. and T. Mulder (eds.). 2011. Deep-Sea Sediments, Vol. 63 (Developments in Sedimentology). Elsevier Science, Oxford.
- Harris, J. K., S. T. Kelley, and N. R. Pace. 2004. New perspective on uncultured bacterial phylogenetic division OP11. Appl. Environ. Microbiol. 70: 845-849. https://doi.org/10.1128/AEM.70.2.845-849.2004
- Heijs, S. K., G. Aloisi, I. Bouloubassi, R. D. Pancost, C. Pierre, J. S. S. Damste, et al. 2006. Microbial community structure in three deep-sea carbonate crusts. Microb. Ecol. 52: 451-462.
- Heijs, S. K., R. R. Haese, P. W. J. J. Wielen, L. J. Forney, and J. D. Elsas. 2007. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep. Microb. Ecol. 53: 384-398. https://doi.org/10.1007/s00248-006-9172-3
- Huber, J. A., H. P. Johnson, D. A. Butterfield, and J. A. Baross. 2006. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8: 88-99. https://doi.org/10.1111/j.1462-2920.2005.00872.x
- Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376.
-
Inagaki, F., M. M. M. Kuypers, U. Tsunogai, J.-I. Ishibashi, K.- I. Nakamura, T. Treude, et al. 2006. Microbial community in a sediment-hosted
$CO_2$ lake of the southern Okinawa Trough hydrothermal system. Proc. Natl. Acad. Sci. USA 103: 14164-14169. https://doi.org/10.1073/pnas.0606083103 - Inagaki, F., T. Nunoura, S. Nakagawa, A. Teske, M. Lever, A. Lauer, et al. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. USA 103: 2815-2820. https://doi.org/10.1073/pnas.0511033103
- Inagaki, F., Y. Sakihama, A. Inoue, C. Kato, and K. Horikoshi. 2002. Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ. Microbiol. 4: 277-286. https://doi.org/10.1046/j.1462-2920.2002.00294.x
- Inagaki, F., M. Suzuki, K. Takai, H. Oida, T. Sakamoto, K. Aoki, et al. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol. 69: 7224-7235. https://doi.org/10.1128/AEM.69.12.7224-7235.2003
- Jorgensen, B. B. and A. Boetius. 2007. Feast and famine - microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5: 770-781. https://doi.org/10.1038/nrmicro1745
- Jiao, L., X. Su, F. Chen, Y. Zhang, H. Jiang, Y. Luo, and H. Dong. 2011. Microbial diversity in sediments of core HS-PC 500 from Shenhu Area, northern South China Sea. Wei Sheng Wu Xue Bao 51: 876-890.
- Knittela, K., A. Boetius, A. Lemkea, H. Eilersa, K. Lochted, O. Pfannkuchee, et al. 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol. J. 20: 269-294. https://doi.org/10.1080/01490450303896
- Kormas, K. A., D. C. Smith, V. Edgcomb, and A. Teske. 2003. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol. Ecol. 45: 115-125. https://doi.org/10.1016/S0168-6496(03)00128-4
- Lopez-Garcia, P., S. Duperron, P. Philippot, J. Foriel, J. Susini, and D. Moreira. 2003. Bacterial diversity in hydrothermal sediment and epsilon-proteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5: 961-971. https://doi.org/10.1046/j.1462-2920.2003.00495.x
- Li, T., P. Wang, and P. Wang. 2008. Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea. Wei Sheng Wu Xue Bao 48: 323-329.
- Li, T., P. Wang, and P. Wang. 2008. Microbial diversity in surface sediments of the Xisha Trough, the South China Sea. Acta Ecol. Sin. 28: 1166-1173. https://doi.org/10.1016/S1872-2032(08)60036-0
- Marchesi, J. R., A. J. Weightman, B. A. Cragg, R. J. Parkes, and J. C. Fry. 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol. Ecol. 34: 221-228. https://doi.org/10.1111/j.1574-6941.2001.tb00773.x
- Musata, N., U. Wernera, K. Knittela, S. Kolba, T. Dodenhofa, J. E. E. V. Beusekomb, et al. 2006. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst. Appl. Microbiol. 29: 333-348. https://doi.org/10.1016/j.syapm.2005.12.006
- Neef, A., R. Amann, H. Schlesner, and K.-H. Schleifer. 1998. Monitoring a widespread bacterial group: In situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144: 3257-3266. https://doi.org/10.1099/00221287-144-12-3257
- Nercessian, O., Y. Fouquet, C. Pierre, D. Prieur, and C. Jeanthon. 2005. Diversity of bacteria and archaea associated with a carbonate-rich metalliferous sediment sample from the rainbow vent field on the mid-atlantic ridge. Environ. Microbiol. 7: 698-714. https://doi.org/10.1111/j.1462-2920.2005.00744.x
- Newberry, C. J., G. Webster, B. A. Cragg, R. J. Parkes, A. J. Weightman, and J. C. Fry. 2004. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ. Microbiol. 6: 274-287. https://doi.org/10.1111/j.1462-2920.2004.00568.x
- Niemann, H., T. Losekann, D. D. Beer, M. Elvert, T. Nadalig, K. Knittel, et al. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854-858. https://doi.org/10.1038/nature05227
- Orcutt, B. N., J. B. Sylvan, N. J. Knab, and K. J. Edwards. 2011. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Molec. Biol. Rev. 75: 361-422. https://doi.org/10.1128/MMBR.00039-10
- Pachiadaki, M. G., V. Lykousis, E. G. Stefanou, and K. A. Kormas. 2010. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol. Ecol. 72: 429-444. https://doi.org/10.1111/j.1574-6941.2010.00857.x
- Parkes, R. J., B. A. Cragg, N. Banning, F. Brock, G. Webster, J. C. Fry, et al. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 9: 1146-1161. https://doi.org/10.1111/j.1462-2920.2006.01237.x
- Parkes, R. J., G. Webster, B. A. Cragg, A. J. Weightman, C. J. Newberry, T. G. Ferdelman, et al. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436: 390-394. https://doi.org/10.1038/nature03796
- Penton, C. R., A. H. Devol, and J. M. Tiedje. 2006. Molecular evidence for the broad distribution of anaerobic ammoniumoxidizing bacteria in freshwater and marine sediments. Appl. Environ. Microbiol. 72: 6829-6832. https://doi.org/10.1128/AEM.01254-06
- Prell, W. L., P. Wang, P. Blum, D. K. Rea, and S. C. Clemens. 1999. Isotopic chemistry of organic carbon in sediments from Leg 184. In J. S. Leventhal (ed.). Proceedings of the Ocean Drilling Program, Scientific Results. Available at http://www.odp.tamu.edu/publications/184_SR/VOLUME/CHAPTERS/215.PDF.
- Reed, D. W., Y. Fujita, M. E. Delwiche, D. B. Blackwelder, P. P. Sheridan, T. Uchida, and F. S. Colwell. 2002. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 68: 3759-3770. https://doi.org/10.1128/AEM.68.8.3759-3770.2002
- Rochelle, P. A., B. A. Cragg, J. C. Fry, R. J. Parkes, and A. J. Weightman. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S ribosomal-RNA gene sequence analysis. FEMS Microbiol. Ecol. 15: 215-225. https://doi.org/10.1111/j.1574-6941.1994.tb00245.x
- Sapp, M., E. R. Parker, L. R. Teal, and M. Schratzberger. 2010. Advancing the understanding of biogeography-diversity relationships of benthic microorganisms in the North Sea. FEMS Microbiol. Ecol. 74: 410-429. https://doi.org/10.1111/j.1574-6941.2010.00957.x
- Schäfer, H., T. G. Ferdelman, H. Fossing, and G. Muyzer. 2007. Microbial diversity in deep sediments of the Benguela Upwelling System. Aquat. Microb. Ecol. 50: 1-9. https://doi.org/10.3354/ame01164
- Schloss, P. D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501-1506. https://doi.org/10.1128/AEM.71.3.1501-1506.2005
- Sun, H., S. Dai, G. Wang, L. Xie, and X. Li. 2010. Phylogenetic diversity analysis of bacteria in the deep-sea sediments from the Bashi Channel by 16S rDNA BLAST. J. Trop. Oceanogr. 29: 41-46.
-
Swofford, D. L. (ed.). 1999. PAUP: Phylogenetic Analysis Using Parsimony (
$^*and$ other methods), Version 4.0. Sinauer Associates, Sunderland, Massachusetts. - Teske, A., K. U. Hinrichs, V. Edgcomb, A. V. Gomez, D. Kysela, S. P. Sylva, et al. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68: 1994-2007 https://doi.org/10.1128/AEM.68.4.1994-2007.2002
- Wagner, C., M. Mau, M. Schlomann, J. Heinicke, and U. Koch. 2007. Characterization of the bacterial flora in mineral waters in upstreaming fluids of deep igneous rock aquifers. J. Geophys. Res. 112: G01003.
- Walker, A. W., J. D. Sanderson, C. Churcher, G. C. Parkes, B. N. Hudspith, N. Rayment, et al. 2011. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 11: 7. https://doi.org/10.1186/1471-2180-11-7
- Wang, G., J. Dong, X. Li, and H. Sun. 2010. The bacterial diversity in surface sediment from the South China Sea. Acta Oceanol. Sin. 29: 98-105.
- Wang, J., C. Jenkins, R. I. Webb, and J. A. Fuerst. 2002. Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl. Environ. Microbiol. 68: 417-422. https://doi.org/10.1128/AEM.68.1.417-422.2002
- Wang, P. and Q. Li (eds.). 2009. The South China Sea: Paleoceanography and Sedimentology. Springer, Berlin.
- Wang, P., T. Li, A. Hu, Y. Wei, W. Guo, N. Jiao, and C. Zhang. 2010. Community structure of Archaea from deep-sea sediments of the South China Sea. Microb. Ecol. 60: 796-806. https://doi.org/10.1007/s00248-010-9746-y
- Webster, G., R. J. Parkes, B. A. Cragg, C. J. Newberry, A. J. Weightman, and J. C. Fry. 2006. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol. Ecol. 58: 65-85. https://doi.org/10.1111/j.1574-6941.2006.00147.x
- Wegener, G., M. Shovitri, K. Knittel, H. Niemann, M. Hovland, and A. Boetius. 2008. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosci. Discuss. 5: 971-1015. https://doi.org/10.5194/bgd-5-971-2008
- Wei, Y., J. Wang, J. Liu, L. Dong, L. Li, H. Wang, et al. 2011. Spatial variations in archaeal lipids of surface water and coretop sediments in the South China Sea and their implications for paleoclimate studies. Appl. Environ. Microbiol. 77: 7479-7489. https://doi.org/10.1128/AEM.00580-11
- Wilms, R., B. Kopke, H. Sass, T. S. Chang, H. Cypionka, and B. Engelen. 2006. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ. Microbiol. 8: 709-719. https://doi.org/10.1111/j.1462-2920.2005.00949.x
- Wilms, R., H. Sass, B. Kopke, J. Koster, H. Cypionka, and B. Engelen. 2006. Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl. Environ. Microbiol. 72: 2756-2764. https://doi.org/10.1128/AEM.72.4.2756-2764.2006
- Xu, F., X. Dai, Y. Chen, H. Zhou, J. Cai, and L. Qu. 2004. Phylogenetic diversity of bacteria and archaea in the Nansha marine sediment, as determined by 16S rDNA analysis. Oceanol. Limnol. Sin. 35: 89-94.
- Zeng, R., J. Zhao, R. Zhang, and N. Lin. 2004. Bacterial community in sediment from the Western Pacific "Warm Pool" and its relationship to environment. Sci. China Ser. D Earth Sci. 42: 282-290.
- Zhang, Y., X. Su, F. Chen, Y. Wang, L. Jiao, H. Dong, et al. 2012. Microbial diversity in cold seep sediments from the northern South China Sea. Geosci. Frontiers 3: 301-316. https://doi.org/10.1016/j.gsf.2011.11.014
- Zhou, J., M. E. Davey, J. B. Figueras, E. Rivkina, D. Gilichinsky, and J. M. Tiedje. 1997. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143: 3913-3919. https://doi.org/10.1099/00221287-143-12-3913
Cited by
- Casting Light on the Adaptation Mechanisms and Evolutionary History of the Widespread Sumerlaeota vol.12, pp.2, 2013, https://doi.org/10.1128/mbio.00350-21
- Microbial metabolism and adaptations in Atribacteria‐dominated methane hydrate sediments vol.23, pp.8, 2013, https://doi.org/10.1111/1462-2920.15656