DOI QR코드

DOI QR Code

Genomic Analysis of Dairy Starter Culture Streptococcus thermophilus MTCC 5461

  • Prajapati, Jashbhai B. (Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University) ;
  • Nathani, Neelam M. (Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University) ;
  • Patel, Amrutlal K. (Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University) ;
  • Senan, Suja (Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University) ;
  • Joshi, Chaitanya G. (Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University)
  • Received : 2012.10.12
  • Accepted : 2012.12.17
  • Published : 2013.04.28

Abstract

The lactic acid bacterium Streptococcus thermophilus is widely used as a starter culture for the production of dairy products. Whole-genome sequencing is expected to utilize the genetic basis behind the metabolic functioning of lactic acid bacterium (LAB), for development of their use in biotechnological and probiotic applications. We sequenced the whole genome of Streptococcus thermophilus MTCC 5461, the strain isolated from a curd source, by 454 GS-FLX titanium and Ion Torrent PGM. We performed comparative genome analysis using the local BLAST and RDP for 16S rDNA comparison and by the RAST server for functional comparison against the published genome sequence of Streptococcus thermophilus CNRZ 1066. The whole genome size of S. thermophilus MTCC 5461 is of 1.73Mb size with a GC content of 39.3%. Streptococcal virulence-related genes are either inactivated or absent in the strain. The genome possesses coding sequences for features important for a probiotic organism such as adhesion, acid tolerance, bacteriocin production, and lactose utilization, which was found to be conserved among the strains MTCC 5461 and CNRZ 1066. Biochemical analysis revealed the utilization of 17 sugars by the bacterium, where the presence of genes encoding enzymes involved in metabolism for 16 of these 17 sugars were confirmed in the genome. This study supports the facts that the strain MTCC 5461 is nonpathogenic and harbors essential features that can be exploited for its probiotic potential.

Keywords

References

  1. Altermann, E., W. M. Russell, M. A. Azcarate-Peril, R. Barrangou, B. L. Buck, O. McAuliffe, et al. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102: 3906-3912. https://doi.org/10.1073/pnas.0409188102
  2. Bolotin, A., B. Quinquis, P. Renault, A. Sorokin, S. D. Ehrlich, S. Kulakauskas, et al. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22: 1554-1558. https://doi.org/10.1038/nbt1034
  3. Burton, J. P., P. A. Wescombe, C. J. Moore, C. N. Chilcott, and J. R. Tagg. 2006. Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl. Environ. Microbiol. 72: 3050-3053. https://doi.org/10.1128/AEM.72.4.3050-3053.2006
  4. Coenye, T. and P. Vandamme. 2003. Extracting phylogenetic information from whole-genome sequencing projects: The lactic acid bacteria as a test case. Microbiology 149: 3507-3517. https://doi.org/10.1099/mic.0.26515-0
  5. Dave, R. I. 1991. Standardizing conditions for pilot scale production and storage of buffalo milk dahi using selected strains of Streptococcus thermophilus. Dissertation. Gujarat Agricultural University, S. K. Nagar, India.
  6. Dave, R. I., J. M. Dave, and S. S. Sannabhadti. 1993. Effect of starter culture and total solids on $\beta$-D-galactosidase activity during manufacture and storage of dahi. Indian J. Dairy Sci. 46: 544-546.
  7. Dave, R. I., J. M. Dave, and S. S. Sannabhadti. 1993. Microbial changes during manufacture and storage of buffalo milk dahi. J. Dairy. Foods Home Sci. 12: 83-88.
  8. Elli, M., M. L. Callegari, S. Ferrari, E. Bessi, D. Cattivelli, S. Soldi, et al. 2006. Survival of yogurt bacteria in the human gut. Appl. Environ. Microbiol. 72: 5113-5117. https://doi.org/10.1128/AEM.02950-05
  9. Falentin, H., S. M. Deutsch, G. Jan, V. Loux, A. Thierry, S. Parayre, et al. 2010. The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications. PLoS One 5: e11748. https://doi.org/10.1371/journal.pone.0011748
  10. Fath, M. J., H. K. Mahanty, and R. Kolter. 1989. Characterization of a purF operon mutation which affects colicin V production. J. Bacteriol. 171: 3158-3161.
  11. Garault, P., C. Letort, V. Juillard, and V. Monnet. 2000. Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk. Appl. Environ. Microbiol. 66: 5128-5133. https://doi.org/10.1128/AEM.66.12.5128-5133.2000
  12. Hao, P., H. Zheng, Y. Yu, G. Ding, W. Gu, S. Chen, et al. 2011. Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production. PLoS One 6: e15964. https://doi.org/10.1371/journal.pone.0015964
  13. Hiller, N. L., B. Janto, J. S. Hogg, R. Boissy, S. Yu, E. Powell, et al. 2007. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: Insights into the pneumococcal supragenome. J. Bacteriol. 189: 8186-8195. https://doi.org/10.1128/JB.00690-07
  14. Iyer, R., S. K. Tomar, S. Kapil, J. Mani, and S. Rameshwar. 2010. Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res. Int. 43: 8. https://doi.org/10.1016/j.foodres.2009.07.008
  15. Khalil, R. 2009. Evidence for probiotic potential of a capsularproducing Streptococcus thermophilus CHCC 3534 strain. Pol. J. Microbiol. 58: 49-55. https://doi.org/10.1099/jmm.0.003293-0
  16. Klaenhammer, T. R., M. A. Azcarate-Peril, E. Altermann, and R. Barrangou. 2007. Influence of the dairy environment on gene expression and substrate utilization in lactic acid bacteria. J. Nutr. 137: 748S-750S.
  17. Krastel, K., D. B. Senadheera, R. Mair, J. S. Downey, S. D. Goodman, and D. G. Cvitkovitch. 2010. Characterization of a glutamate transporter operon, glnQHMP, in Streptococcus mutans and its role in acid tolerance. J. Bacteriol. 192: 984-993. https://doi.org/10.1128/JB.01169-09
  18. Kumar, R. 1990. Standardizing conditions for pilot scale production and storage of cow milk dahi using Streptococcus thermophilus strains as starter culture - some microbiological aspects. Dissertation. Gujarat Agricultural University, S. K. Nagar, India.
  19. Lebeer, S., J. Vanderleyden, and S. C. De Keersmaecker. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72: 728-764. https://doi.org/10.1128/MMBR.00017-08
  20. Mayo, B., D. van Sinderen, and M. Ventura. 2008. Genome analysis of food grade lactic acid-producing bacteria: From basics to applications. Curr. Genomics 9: 169-183. https://doi.org/10.2174/138920208784340731
  21. Pastink, M. I., B. Teusink, P. Hols, S. Visser, W. M. de Vos, and J. Hugenholtz. 2009. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl. Environ. Microbiol. 75: 3627-3633. https://doi.org/10.1128/AEM.00138-09
  22. Postma, P. W., J. W. Lengeler, and G. R. Jacobson. 1993. Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543-596.
  23. Prajapati, J. B., C. D. Khedkar, J. Chitra, S. Suja, V. Mishra, V. Sreeja, et al. 2011. Whole-genome shotgun sequencing of an Indian-origin Lactobacillus helveticus strain, MTCC 5463, with probiotic potential. J. Bacteriol. 193: 4282-4283. https://doi.org/10.1128/JB.05449-11
  24. Prajapati, J. B., C. D. Khedkar, J. Chitra, S. Suja, V. Mishra, V. Sreeja, et al. 2012. Whole-genome shotgun sequencing of Lactobacillus rhamnosus MTCC 5462, a strain with probiotic potential. J. Bacteriol. 194: 1264-1265. https://doi.org/10.1128/JB.06644-11
  25. Rodionov, D. A. and M. S. Gelfand. 2005. Identification of a bacterial regulatory system for ribonucleotide reductases by phylogenetic profiling. Trends Genet. 21: 385-389. https://doi.org/10.1016/j.tig.2005.05.011
  26. Roussel, Y., F. Bourgoin, G. Guedon, M. Pebay, and B. Decaris. 1997. Analysis of the genetic polymorphism between three Streptococcus thermophilus strains by comparing their physical and genetic organization. Microbiology 143 (Pt 4): 1335-1343. https://doi.org/10.1099/00221287-143-4-1335
  27. Salminen, S., J. Nurmi, and M. Gueimonde. 2005. The genomics of probiotic intestinal microorganisms. Genome Biol. 6: 225. https://doi.org/10.1186/gb-2005-6-7-225
  28. Saxena, A. 1990. Performance evaluation of Streptococcus thermophilus strains in skim milk dahi manufacture with reference to its microbiology and keeping quality. Dissertation. Gujarat Agricultural University, S. K. Nagar, India.
  29. Vinderola, C. G., P. Mocchiutti, and J. A. Reinheimer. 2002. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J. Dairy Sci. 85: 721-729. https://doi.org/10.3168/jds.S0022-0302(02)74129-5
  30. Vogel, R. F., M. Pavlovic, M. A. Ehrmann, A. Wiezer, H. Liesegang, S. Offschanka, et al. 2011. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb. Cell Fact 10 (Suppl 1): S6. https://doi.org/10.1186/1475-2859-10-S1-S6
  31. Xu, P., X. Ge, L. Chen, X. Wang, Y. Dou, J. Z. Xu, et al. 2011. Genome-wide essential gene identification in Streptococcus sanguinis. Sci. Rep. 1: 125.

Cited by

  1. Insight into the Draft Genome Sequence of Human Isolate Lactobacillus rhamnosus LR231, a Bacterium with Probiotic Potential vol.2, pp.1, 2013, https://doi.org/10.1128/genomea.00111-14
  2. Geriatric Respondents and Non-Respondents to Probiotic Intervention Can be Differentiated by Inherent Gut Microbiome Composition vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00944
  3. Streptococcus thermophilus bacteraemia in a patient with transient bowel ischaemia secondary to polycythaemia vol.2, pp.3, 2013, https://doi.org/10.1099/jmmcr.0.000060
  4. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life? vol.10, pp.6, 2013, https://doi.org/10.1371/journal.pone.0128099
  5. Influence of arginine on the growth, arginine metabolism and amino acid consumption profiles of Streptococcus thermophilus T1C2 in controlled pH batch fermentations vol.121, pp.3, 2013, https://doi.org/10.1111/jam.13221
  6. New Insights into Various Production Characteristics of Streptococcus thermophilus Strains vol.17, pp.10, 2013, https://doi.org/10.3390/ijms17101701
  7. Genome sequencing of Pediococcus acidilactici (NRCC1), a novel isolate from dromedary camel (Camelus dromedarius) rumen fluid vol.68, pp.2, 2018, https://doi.org/10.1007/s13213-017-1320-0
  8. Profiles of Streptococcus thermophilus MN ‐ ZLW ‐002 nutrient requirements in controlled pH batch fermentations vol.8, pp.2, 2013, https://doi.org/10.1002/mbo3.633
  9. Transcriptomic and proteomic profiling revealed global changes in Streptococcus thermophilus during pH-controlled batch fermentations vol.57, pp.9, 2013, https://doi.org/10.1007/s12275-019-8604-y
  10. Genome Analysis and Physiological Characterization of Four Streptococcus thermophilus Strains Isolated From Chinese Traditional Fermented Milk vol.11, pp.None, 2013, https://doi.org/10.3389/fmicb.2020.00184
  11. Profiles of Small Regulatory RNAs at Different Growth Phases of Streptococcus thermophilus During pH-Controlled Batch Fermentation vol.12, pp.None, 2013, https://doi.org/10.3389/fmicb.2021.765144