References
- APHA. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (Ed).
- Ariesyady, H. D., T. Ito, K. Yoshiguchi, and S. Okabe. 2007. Phylogenetic and functional diversity of propionate-oxidizing bacteria in an UASB digester sludge. Appl. Microbiol. Biotechnol. 75: 673-683. https://doi.org/10.1007/s00253-007-0842-y
- Barredo, M. S. and L. M. Evison. 1991. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl. Environ. Microbiol. 57: 1764-1769.
- Bassam, B. J., G. Caetano-Anollés, and P. M Gresshoff. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. https://doi.org/10.1016/0003-2697(91)90120-I
- Boone, D. R. and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626-632.
- Chae, K. J., A. Jang, S. K. Yim, and I. S. Kim. 2008. The effects of digestion and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99: 1-6. https://doi.org/10.1016/j.biortech.2006.11.063
- Chen, S. and X. Dong. 2005. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 55: 2257-2261. https://doi.org/10.1099/ijs.0.63807-0
- Chen, S., X. Liu, and X. Dong. 2005. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int. J. Syst. Evol. Microbiol. 55: 1319-1324. https://doi.org/10.1099/ijs.0.63565-0
- de Bok, F. A. M., H. J. M. Harmsen, C. M. Plugge, M. C. de Vries, A. D. L. Akkermans, W. M. de Vos, and A. J. M. Stams. 2005. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol. 55: 1697- 1703. https://doi.org/10.1099/ijs.0.02880-0
- Demirel, B. and P. Scherer. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: A review. Rev. Environ. Sci. Biotechnol. 7: 173-190. https://doi.org/10.1007/s11157-008-9131-1
- Dhaked, R. K., C. K. Waghmare, S. I. Alam, D. V. Kamboj, and L. Singh. 2003. Effect of propionate toxicity on methanogenesis of night soil at phychrophilic temperature. Bioresour. Technol. 87: 299-303. https://doi.org/10.1016/S0960-8524(02)00227-4
- Ferry, J. G., P. H. Smith, and R. S. Wolfe. 1974. Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatei sp. nov. Int. J. Syst. Bacteriol. 24: 465-469. https://doi.org/10.1099/00207713-24-4-465
- Grabowski, A., B. J. Tindall, V. Bardin, D. Blanchet, and C. Jeanthon. 2005. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int. J. Syst. Evol. Microbiol. 55: 1113-1121. https://doi.org/10.1099/ijs.0.63426-0
- Hajarnis, S. R. and D. R. Ranade. 1994. Effect of propionate toxicity on some methanogens at different pH values and in combination with butyrate, pp. 46-49. Proceedings of 7th International Symposium on Anaerobic Digestion.
- Imachi, H., Y. Sekiguchi, Y. Kamagata, S. Hanada, A. Ohashi, and H. Harada. 2002. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionateoxidizing bacterium. Int. J. Syst. Evol. Microbiol. 52: 1729- 1735. https://doi.org/10.1099/ijs.0.02212-0
- Imachi, H., S. Sakai, A. Ohashi, H. Harada, S. Hanada, Y. Kamagata, and Y. Sekiguchi. 2007. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionateoxidizing bacterium. Int. J. Syst. Evol. Microbiol. 57: 1487- 1492. https://doi.org/10.1099/ijs.0.64925-0
- Keyser, M., R. C. Witthuhn, C. Lamprecht, M. P. A. Coetzee, and T. J. Britz. 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst. Appl. Microbiol. 29: 77-84. https://doi.org/10.1016/j.syapm.2005.06.003
- Kosaka, T., S. Kato, T. Shimoyama, S. Ishii, T. Abe, and K. Watanabe. 2008. The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. 18: 442-448 https://doi.org/10.1101/gr.7136508
- Li, J., L. Zhang, Q. Ban, A. K. Jha, and Y. Xu. 2012. Diversity and distribution of methanogenic archaea in an anaerobic baffled reactor (ABR) treating sugar refinery wastewate. J. Microbiol. Biotechnol. 23: 137-143.
- Li, J., Q. Ban, L. Zhang, and A. K. Jha. 2012. Syntrophic propionate degradation in anaerobic digestion: A review. Int. J. Agric. Biol. 5: 843-850.
- Lettinga, G., J. Field, J. Van Lier, G. Zeeman, and L. W. Huishoff Pol. 1997. Advanced anaerobic waste water treatment in the near future. Water Sci. Technol. 35(10): 5-12. https://doi.org/10.1016/S0273-1223(97)00222-9
- Liu, Y. and W. B. Whitman. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N.Y. Acad. Sci. 1125: 171-189. https://doi.org/10.1196/annals.1419.019
- Ma, J., L. J. Mungoni, W. Verstraete, and M. Carballa. 2009. Maximum removal rate of propionic acid as a sole carbon source in UASB reactors and the importance of the macro- and micro-nutrients stimulation. Bioresour. Technol. 100: 3477- 3482. https://doi.org/10.1016/j.biortech.2009.02.060
- Müller, N., P. Worm, B. Schink, A. J. M. Stams, and C. M. Plugge. 2010. Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms. Environ. Microbiol. Rep. 2: 489-499. https://doi.org/10.1111/j.1758-2229.2010.00147.x
- Narihiro, T., T. Terada, A. Ohashi, Y. Kamagata, K. Nakamura, and Y. Sekiguchi. 2012. Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res. 46: 2167-2175. https://doi.org/10.1016/j.watres.2012.01.034
- Nedwell, D. B. 1999. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101-111. https://doi.org/10.1111/j.1574-6941.1999.tb00639.x
- Okabe, S., M. Oshiki, Y. Kamagata, N. Yamaguchi, M. Toyofuku, Y. Yawata, et al. 2010. A great leap forward in microbial ecology. Microbes Environ. 25: 230-240. https://doi.org/10.1264/jsme2.ME10178
- Parawira, W., J. S. Read, B. Mattiasson, and L. Björnsson. 2008. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32: 44-50. https://doi.org/10.1016/j.biombioe.2007.06.003
- Pullammanappallil, P. C., D. P. Chynoweth, G. Lyberatos, and S. A. Svoronos. 2001. Stable performance of anaerobic digestion in the presence of a high concentration propionic acid. Bioresour. Technol. 78: 165-169. https://doi.org/10.1016/S0960-8524(00)00187-5
- Rastogi, G., D. Ranade, T. Y. Yeole, M. S. Patole, and Y. S. Shouche. 2008. Investigation of methanogen population structure in biogas reactor by molecular characterization of methylcoenzyme M reductase A (mcrA) genes. Bioresour. Technol. 99: 5317-5326. https://doi.org/10.1016/j.biortech.2007.11.024
- Rincón, B., F. Raposo, R. Borja, J. M. Gonzalez, M. C. Portillo, and C. Saiz-Jimenez. 2005. Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phase olive mill solid wastes at low organic loading rates. J. Biotechnol. 121: 534-543.
- Shigematsu, T., S. Era, Y. Mizuno, K. Ninomiya, Y. Kamegawa, S. Morimura, and K. Kida. 2006. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl. Microbiol. Biotechnol. 72: 401-415. https://doi.org/10.1007/s00253-005-0275-4
- Uyanik, S. 2003. Granule development in anaerobic baffled reactor. Turkish J. Eng. Environ. Sci. 27: 131-144.
- Westerholm, M., B. Müller, V. Arthurson, and A. Schnürer. 2011. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ. 26: 347-353. https://doi.org/10.1264/jsme2.ME11123
- Worm, P., A. J. M. Stams, X. Cheng, and C. M. Plugge. 2011. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157: 280-289. https://doi.org/10.1099/mic.0.043927-0
- Yamada, T., Y. Sekiguchi, H. Imachi, Y. Kamagata, A. Ohashi, and H. Harada. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl. Environ. Microbiol. 71: 7493-7503. https://doi.org/10.1128/AEM.71.11.7493-7503.2005
- Yamada, T., H. Imachi, A. Ohashi, H. Harada, S. Hanada, Y. Kamagata, and Y. Sekiguchi. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 57: 2299-2306. https://doi.org/10.1099/ijs.0.65098-0
- Zhang, L., J. Li, Q. Ban, J. He, and A. K. Jha. 2012. Metabolic pathways of hydrogen production in fermentative acidogenic microflora. J. Microbiol. Biotechnol. 22: 668-673. https://doi.org/10.4014/jmb.1110.10076
- Zheng, D. and L. Raskin. 2000. Quantification of Methanosaeta species in anaerobic bioreactors using genus- and speciesspecific hybridization probes. Microb. Ecol. 39: 246-262.
Cited by
- Quantitative Analysis of Previously Identified Propionate-Oxidizing Bacteria and Methanogens at Different Temperatures in an UASB Reactor Containing Propionate as a Sole Carbon Source vol.171, pp.8, 2013, https://doi.org/10.1007/s12010-013-0465-y
- Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors vol.99, pp.24, 2013, https://doi.org/10.1007/s00253-015-6942-1
- Shift of Propionate-Oxidizing Bacteria with HRT Decrease in an UASB Reactor Containing Propionate as a Sole Carbon Source vol.175, pp.1, 2015, https://doi.org/10.1007/s12010-014-1265-8
- Response of Syntrophic Propionate Degradation to pH Decrease and Microbial Community Shifts in an UASB Reactor vol.26, pp.8, 2016, https://doi.org/10.4014/jmb.1602.02015
- Analysis of propionate‐degrading consortia from agricultural biogas plants vol.5, pp.6, 2013, https://doi.org/10.1002/mbo3.386
- Using DNA-based stable isotope probing to reveal novel propionate- and acetate-oxidizing bacteria in propionate-fed mesophilic anaerobic chemostats vol.9, pp.1, 2013, https://doi.org/10.1038/s41598-019-53849-0