DOI QR코드

DOI QR Code

Optimization of ${\beta}$-Glucosidase Production by a Strain of Stereum hirsutum and Its Application in Enzymatic Saccharification

  • Received : 2012.10.23
  • Accepted : 2012.12.04
  • Published : 2013.03.28

Abstract

A high ${\beta}$-glucosidase (BGL)-producing strain, Stereum hirsutum, was identified and isolated and showed a maximum BGL activity (10.4 U/ml) when cultured with Avicel and tryptone as the carbon and nitrogen sources, respectively. In comparison with other BGLs, BGL obtained from S. hirsutum showed a higher level of activity to cellobiose ($V_{max}$ = 172 U/mg, and $k_{cat}$ = 281/s). Under the optimum conditions (600 rpm, $30^{\circ}C$, and pH 6.0), the maximum BGL activity of 10.4 U/ml with the overall productivity of 74.5 U/l/h was observed. BGL production was scaled up from a laboratory scale (7-L fermenter) to a pilot scale (70-L fermenter). When S. hirsutum was cultured in fed-batch culture with rice straw as the carbon source in a 70-L fermenter, a comparable productivity of 78.6 U/l/h was obtained. Furthermore, S. hirsutum showed high levels of activity of other lignocellulases (cellobiohydrolase, endoglucanase, xylanase, and laccase) that are involved in the saccharification of biomasses. Application of S. hirsutum lignocellulases in the hydrolysis of Pinus densiflora and Catalpa ovata showed saccharification yields of 49.7% and 43.0%, respectively, which were higher than the yield obtained using commercial enzymes.

Keywords

References

  1. Cara, C., E. Ruiz, I. Ballesteros, M. J. Negro, and E. Castro. 2006. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem. 41: 423-429. https://doi.org/10.1016/j.procbio.2005.07.007
  2. Deng, Y. and S. S. Fong. 2010. Influence of culture aeration on the cellulase activity of Thermobifida fusca. Appl. Microbiol. Biotechnol. 85: 965-974. https://doi.org/10.1007/s00253-009-2155-9
  3. Garcia Kirchner, O., M. Segura-Granados, and P. Rodriguez- Pascual. 2005. Effect of media composition and growth conditions on production of $\beta$-glucosidase by Aspergillus niger C-6. Appl. Biochem. Biotechnol. 121-124: 347-359.
  4. Gupta, R., G. Mehta, Y. P. Khasa, and R. C. Kuhad. 2011. Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22: 797-804. https://doi.org/10.1007/s10532-010-9404-6
  5. Horn, S., G. Vaaje-Kolstad, B. Westereng, and V. G. Eijsink. 2012. Novel enzymes for the degradation of cellulose. Biotechnol. Biofuels 5: 45. https://doi.org/10.1186/1754-6834-5-45
  6. Joo, A. R., K. M. Lee, W. I. Sim, M. Jeya, M. R. Hong, Y. S. Kim, et al. 2009. Thiamine increases $\beta$-glucosidase production in the newly isolated strain of Fomitopsis pinicola. Lett. Appl. Microbiol. 49: 196-203. https://doi.org/10.1111/j.1472-765X.2009.02639.x
  7. Kocher, G. S., K. L. Kalra, and G. Banta. 2008. Optimization of cellulase production by submerged fermentation of rice straw by Trichoderma harzianum Rut-C 8230. Int. J. Microbiol. 5.
  8. Kostylev, M. and D. Wilson. 2012. Synergistic interactions in cellulose hydrolysis. Biofuels 3: 61-70. https://doi.org/10.4155/bfs.11.150
  9. Kovacs, K., S. Macrelli, G. Szakacs, and G. Zacchi. 2009. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol. Biofuels 2: 14. https://doi.org/10.1186/1754-6834-2-14
  10. Kuhad, R. C., R. Gupta, and A. Singh. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 2011. DOI: 10.4061/2011/280696.
  11. Lee, S. M., B. W. Koo, J. W. Choi, D. H. Choi, B. S. An, E. B. Jeung, et al. 2005. Degradation of bisphenol A by white rot fungi, Stereum hirsutum and Heterobasidium insulare, and reduction of its estrogenic activity. Biol. Pharm. Bull. 28: 201-207. https://doi.org/10.1248/bpb.28.201
  12. Lynd, L. R., M. S. Laser, D. Bransby, B. E. Dale, B. Davison, R. Hamilton, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26: 169-172. https://doi.org/10.1038/nbt0208-169
  13. Mendoza, N. S., Y. Katakura, and S. Shioya. 2004. Influence of agitation and dissolved oxygen tension on the growth and cellulase-free xylanase production by Thermomyces lanuginosus C1a in bioreactor. Biotechnol. Sustain. Util. Biol. Resour. Trop. 17: 284-289.
  14. Nguyen, N. P., K. M. Lee, I. W. Kim, Y. S. Kim, M. Jeya, and J. K. Lee. 2010. One-step purification and characterization of a $\beta$-1,4-glucosidase from a newly isolated strain of Stereum hirsutum. Appl. Microbiol. Biotechnol. 87: 2107-2116. https://doi.org/10.1007/s00253-010-2668-2
  15. Saha, B. C. and M. A. Cotta. 2008. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy 32: 971-977. https://doi.org/10.1016/j.biombioe.2008.01.014
  16. Singhania, R. R., A. K. Patel, R. K. Sukumaran, C. Larroche, and A. Pandey. 2013. Role and significance of $\beta$-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 127: 500-507. https://doi.org/10.1016/j.biortech.2012.09.012
  17. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, et al. 2008. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO.
  18. Srivastava, S. K., K. B. Ramachandran, and K. S. Gopalkrishnan. 1981. $\beta$-Glucosidase production by Aspergillus wentii in stirred tank bioreactors. Biotechnol. Lett. 3: 477-480. https://doi.org/10.1007/BF00147557

Cited by

  1. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes vol.78, pp.4, 2014, https://doi.org/10.1128/mmbr.00035-14
  2. Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21 vol.25, pp.7, 2015, https://doi.org/10.4014/jmb.1503.03023
  3. Construction of a Recombinant Escherichia coli JM109/A-68 for Production of Carboxymethylcellulase and Comparison of Its Production with Its Wild type, Bacillus velezensis A-68 in a Pilot-scale Biorea vol.21, pp.5, 2013, https://doi.org/10.1007/s12257-016-0468-y
  4. Enhanced Saccharification and Fermentation of Rice Straw by Reducing the Concentration of Phenolic Compounds Using an Immobilized Enzyme Cocktail vol.14, pp.6, 2013, https://doi.org/10.1002/biot.201800468
  5. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042