References
- Abriouel, H., C. M. Franz , N. Ben Omar, and A. Galvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
- Ahern, M., S Verschueren, and D. V. Sinderen. 2003. Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett. 220: 127-131. https://doi.org/10.1016/S0378-1097(03)00086-7
- Anderson, I., A. Sorokin, and V. Kapatral. 2005. Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol. Lett. 250: 175-184. https://doi.org/10.1016/j.femsle.2005.07.008
- Barboza-Corona, J. E., H. Vazquez-Acosta, D. K. Bideshi, and R. Salcedo-Hernandez.. 2007. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch. Microbiol. 187: 117-126. https://doi.org/10.1007/s00203-006-0178-5
- Barboza-Corona, J. E., N. Fuente-Salcido, N. Alva-Murillo, A. Ochoa-Zarzosa, and J. E. Lopez-Meza. 2009. Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet. Microbiol. 138: 179-183. https://doi.org/10.1016/j.vetmic.2009.03.018
- Beegle, C. C. and T. Yamamoto. 1992. History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124: 587-616. https://doi.org/10.4039/Ent124587-4
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248. https://doi.org/10.1016/0003-2697(76)90527-3
- Chehimi, S., F. Delalande S. Sable, M. R. Hajlaoui, A. Van Dorsselaer, F. Limam, and A. M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290. https://doi.org/10.1139/w06-116
- Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, et al. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247. https://doi.org/10.1046/j.1472-765X.2001.00898.x
- Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis subsp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
- Cherif, A., W. Rezgui, N. Raddadi, D. Daffonchio, and A. Boudabous. 2008. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. entomocidus HD110. Microbiol. Res. 163: 684-692. https://doi.org/10.1016/j.micres.2006.10.005
- Chen, H. and D. G. Hoover. 2003. Bacteriocins and their food applications. Comprehen. Rev. Food Sci. Food Safety 2: 82-100
- Cleveland, J., T. J. Montville, I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
- Delves-Broughton, J. 1990. Nisin and its uses as food preservative. Food Tech. 44: 100-117.
- De la Fuente-Salcido, N., M. G. Alanís-Guzmán, D. K. Bideshi, R. Salcedo-Hernández, M. Bautista-Justo, and J. E. Barboza- Corona. 2008. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch. Microbiol. 190: 633-640. https://doi.org/10.1007/s00203-008-0414-2
- DeVuyst, L. and E. J. Vandamme. 1994. Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: Properties, biosynthesis, fermentation and applications, pp. 151-221. In L. De Vuyst and E. J. Vandamme (eds.). Bacteriocins of Lactic Acid Bacteria. Chapman and Hall, London.
- Favret, M. E. and A. A. Yousten. 1989. Thuricin: The bacteriocin produced by Bacillus thuringiensis. J. Invertebr. Pathol. 53: 206-216. https://doi.org/10.1016/0022-2011(89)90009-8
- Feitelson, J. S., J. Payne, and L. Kim. 1992. Bacillus thuringiensis: Insects and beyond. BioTechnology 10: 271-275. https://doi.org/10.1038/nbt0392-271
- Ghanbari, M., M. Rezaei, M. Soltani, and G. Shah-Hosseini. 2009. Production of bacteriocin by a novel Bacillus sp. strain RF 140, an intestinal bacterium of Caspian Frisian Roach (Rutilus frisiikutum). Iran. J. Vet. Res. 10: 267-272.
- Gray, E. J., K. D. Lee, A. M. Souleimanov, M. R. Di Falco, X. Zhou, A. Ly, et al. 2006. A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation and classification. J. Appl. Microbiol. 100: 545-554. https://doi.org/10.1111/j.1365-2672.2006.02822.x
- Hardy, K. G. 1993. Plasmids, pp. 138-272. In K. G. Hardy (ed.). The Practical Approach Series, 2nd Ed.
- Hyronimus, B., C. Le Marrec, and M. C. Urdaci. 1998. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol. 85: 42-50. https://doi.org/10.1046/j.1365-2672.1998.00466.x
- Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram positive bacteria. Microbiol. Rev. 59: 171-200.
- Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888. https://doi.org/10.1111/j.1365-2672.2004.02513.x
- Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
- Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303.
- Laemmli, U. K. 1970. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lee, H., J. J. Churey, and R. W. Worobo. 2009a. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299: 205-213. https://doi.org/10.1111/j.1574-6968.2009.01749.x
- Lee, K. D., E. J. Gray, F. Mabood, W. J. Jung, T. Charles, S. R. Clark, et al. 2009b. The class IId bacteriocin thuricin-17 increases plant growth. Planta 229: 747-755. https://doi.org/10.1007/s00425-008-0870-6
- Naclerio, G., E. Ricca, M. Sacco, and M. De Felice. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59: 4313-4316.
- Padilla, C., P. Brevis, O. Lobos, and E. Hubert. 1996. Bacteriocin activity of Pseudomonas sp. on enteropathogenic bacteria in an artificial aquatic system. Lett. Appl. Microbiol. 23: 371-374. https://doi.org/10.1111/j.1472-765X.1996.tb01339.x
- Paik, H. D., S. S. Bae, and J. G. Pan. 1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Ind. Microbiol. Biotechnol. 19: 294-298. https://doi.org/10.1038/sj.jim.2900462
- Ross, R. P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 79: 3-16. https://doi.org/10.1016/S0168-1605(02)00174-5
- Sezen, K. and Z. Demirbag. 1999. Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl. Entomol. Zool. 34: 85-89. https://doi.org/10.1303/aez.34.85
Cited by
- Bacteriocins ofBacillus thuringiensiscan expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide vol.59, pp.8, 2013, https://doi.org/10.1139/cjm-2013-0284
- In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics vol.12, pp.5, 2014, https://doi.org/10.3390/md12052422
- Antimicrobial peptides of the genus Bacillus: a new era for antibiotics vol.61, pp.2, 2013, https://doi.org/10.1139/cjm-2014-0613
- Bacteriocins from the rhizosphere microbiome – from an agriculture perspective vol.6, pp.None, 2013, https://doi.org/10.3389/fpls.2015.00909
- Characterization of a newly identified lipase from a lipase-producing bacterium vol.11, pp.4, 2013, https://doi.org/10.1007/s11515-016-1409-z
- Bacteriocins synthesized by Bacillus thuringiensis : generalities and potential applications vol.27, pp.3, 2013, https://doi.org/10.1097/mrm.0000000000000076
- Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum vol.26, pp.5, 2016, https://doi.org/10.4014/jmb.1601.01063
- Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis vol.6, pp.None, 2016, https://doi.org/10.1038/srep35560
- Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs vol.14, pp.7, 2013, https://doi.org/10.2903/j.efsa.2016.4524
- Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens vol.33, pp.10, 2017, https://doi.org/10.1007/s11274-017-2347-x
- Bacillus species as versatile weapons for plant pathogens: a review vol.31, pp.3, 2013, https://doi.org/10.1080/13102818.2017.1286950
- Heterologous expression and purification of BtCspB, a novel cold-shock protein-like bacteriocin from Bacillus thuringiensis BRC-ZYR2 vol.35, pp.2, 2013, https://doi.org/10.1007/s11274-019-2595-z
- The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens vol.25, pp.1, 2013, https://doi.org/10.15446/abc.v25n1.76867
- Identification and partial purification of thuricin 4AJ1 produced by Bacillus thuringiensis vol.202, pp.4, 2013, https://doi.org/10.1007/s00203-019-01782-1
- Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review vol.20, pp.1, 2013, https://doi.org/10.1111/1541-4337.12658
- Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems vol.13, pp.5, 2013, https://doi.org/10.3390/toxins13050355