DOI QR코드

DOI QR Code

Antiviral Activity of the Plant Extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii Against Influenza Virus A/PR/8/34

  • Won, Ji-Na (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Seo-Yong (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song, Dae-Sub (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Poo, Haryoung (Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2012.10.29
  • 심사 : 2012.11.20
  • 발행 : 2013.01.28

초록

Influenza viruses cause significant morbidity and mortality in humans through epidemics or pandemics. Currently, two classes of anti-influenza virus drugs, M2 ion-channel inhibitors (amantadin and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir), have been used for the treatment of the influenza virus infection. Since the resistance to these drugs has been reported, the development of a new antiviral agent is necessary. In this study, we examined the antiviral efficacy of the plant extracts against the influenza A/PR/8/34 infection. In vitro, the antiviral activities of the plant extracts were investigated using the cell-based screening. Three plant extracts, Thuja orientalis, Aster spathulifolius, and Pinus thunbergii, were shown to induce a high cell viability rate after the infection with the influenza A/PR/8/34 virus. The antiviral activity of the plant extracts also increased as a function of the concentration of the extracts and these extracts significantly reduced the visible cytopathic effect caused by virus infections. Furthermore, the treatment with T. orientalis was shown to have a stronger inhibitory effect than that with A. spathulifolius or P. thunbergii. These results may suggest that T. orientalis has anti-influenza A/PR/8/34 activity.

키워드

참고문헌

  1. Bright, R. A., D. K. Shay, B. Shu, N. J. Cox, and A. I. Klimov. 2006. Adamantane resistance among influenza A viruses isolated early during the 2005-2006 influenza season in the United States. JAMA 295: 891-894. https://doi.org/10.1001/jama.295.8.joc60020
  2. Cassetti, M. C., R. Couch, J. Wood, and Y. Pervikov. 2005. Report of meeting on the development of influenza vaccines with broad spectrum and long-lasting immune responses, World Health Organization, Geneva, Switzerland, 26-27 February 2004. Vaccine 23: 1529-1533. https://doi.org/10.1016/j.vaccine.2004.09.004
  3. CDC. 2009. Effectiveness of 2008-09 trivalent influenza vaccine against 2009 pandemic influenza A (H1N1) - United States, May-June 2009. Morb. Mortal. Wkly. Rep. 58.
  4. Choi, H. J., J. H. Song, K. S. Park, and D. H. Kwon. 2009. Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 37: 329-333. https://doi.org/10.1016/j.ejps.2009.03.002
  5. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162: 156-159.
  6. Condit, R. C. 2006. Fields virology, pp. 25-57. In D. M. Knipe and P. M. Howley (eds.). Principles of Virology, 5th Ed. Lippincott Williams and Wilkins, Philadelphia.
  7. Couch, R. B. and G. G. Jackson. 1976. Antiviral agents in influenza - summary of Influenza Workshop VIII. J. Infect. Dis. 134: 516-527. https://doi.org/10.1093/infdis/134.5.516
  8. De Clercq, E. 2004. Antiviral drugs in current clinical use. J. Clin. Virol. 30: 115-133. https://doi.org/10.1016/j.jcv.2004.02.009
  9. Furuta, Y., K. Takahashi, M. Kuno-Maekawa, H. Sangawa, S. Uehara, K. Kozaki, et al. 2005. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 49: 981-986. https://doi.org/10.1128/AAC.49.3.981-986.2005
  10. Garten, R. J., C. T. Davis, C. A. Russell, B. Shu, S. Lindstrom, A. Balish, et al. 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325: 197-201. https://doi.org/10.1126/science.1176225
  11. Glezen, W. P. 1996. Emerging infections: Pandemic influenza. Epidemiol. Rev. 18: 64-76. https://doi.org/10.1093/oxfordjournals.epirev.a017917
  12. Hampson, A. W. 2002. Influenza virus antigens and 'antigenic drift', pp. 49-85. In C. W. Potter (ed.). Perspectives in Medical Virology, Vol. 7. Elsevier.
  13. Hui, E. K. and D. P. Nayak. 2001. Role of ATP in influenza virus budding. Virology 290: 329-341. https://doi.org/10.1006/viro.2001.1181
  14. Irvine, J. D., L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove. 1999. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 88: 28-33. https://doi.org/10.1021/js9803205
  15. Jackson, D. C. and L. E. Brown. 1991. A synthetic peptide of influenza virus hemagglutinin as a model antigen and immunogen. Pept. Res. 4: 114-124.
  16. Kawaoka, Y. 2006. Influenza Virology: Current Topics. Caister Academic Press.
  17. Kelly, H. and K. Grant. 2009. Interim analysis of pandemic influenza (H1N1) 2009 in Australia: Surveillance trends, age of infection and effectiveness of seasonal vaccination. Euro. Surveill. 14.
  18. Kiso, M., K. Takahashi, Y. Sakai-Tagawa, K. Shinya, S. Sakabe, Q. M. Le, et al. 2010. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc. Natl. Acad. Sci. USA 107: 882-887. https://doi.org/10.1073/pnas.0909603107
  19. Murris-Espin, M., A. Didier, S. Mezghani, L. Lacassagne, and P. Leophonte. 1999. Influenza and asthma. Rev. Mal. Res. 16: 9-15.
  20. Noah, J. W., W. Severson, D. L. Noah, L. Rasmussen, E. L. White, and C. B. Jonsson. 2007. A cell-based luminescence assay is effective for high-throughput screening of potential influenza antivirals. Antiviral Res. 73: 50-59. https://doi.org/10.1016/j.antiviral.2006.07.006
  21. Numazaki, Y., T. Oshima, A. Ohmi, A. Tanaka, Y. Oizumi, S. Komatsu, et al. 1987. A microplate method for isolation of viruses from infants and children with acute respiratory infections. Microbiol. Immunol. 31: 1085-1095. https://doi.org/10.1111/j.1348-0421.1987.tb01340.x
  22. Palese, S. M. 2007. Orthomyxoviridae: The viruses and their replication, pp. 1647-1689. In K. DM and H. PM (eds.). Fields Virology, 5th Ed. Lippincott Williams &Wilkins, Philadelphia.
  23. Poland, G. A., R. M. Jacobson, and P. V. Targonski. 2007. Avian and pandemic influenza: An overview. Vaccine 25: 3057-3061. https://doi.org/10.1016/j.vaccine.2007.01.050
  24. Renaud, C., J. Kuypers, and J. A. Englund. 2011. Emerging oseltamivir resistance in seasonal and pandemic influenza A/ H1N1. J. Clin. Virol. 52: 70-78. https://doi.org/10.1016/j.jcv.2011.05.019
  25. WHO. 2009. Summary report of a high-level consultation: New influenza A (H1N1). World Health Organization, Geneva.

피인용 문헌

  1. Low-Volatile Lipophilic Compounds in Needles, Defoliated Twigs, and Outer Bark of Pinus thunbergii vol.8, pp.12, 2013, https://doi.org/10.1177/1934578x1300801227
  2. Anti-Diabetic Effect ofAster sphathulifoliusin C57BL/KsJ-db/dbMice vol.18, pp.9, 2013, https://doi.org/10.1089/jmf.2014.3416
  3. Thuja orientalis reduces airway inflammation in ovalbumin-induced allergic asthma vol.12, pp.3, 2013, https://doi.org/10.3892/mmr.2015.3910
  4. Anti-Obesity Effects of Aster spathulifolius Extract in High-Fat Diet-Induced Obese Rats vol.19, pp.4, 2013, https://doi.org/10.1089/jmf.2015.3566
  5. In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza A Virus vol.26, pp.1, 2013, https://doi.org/10.4014/jmb.1508.08024
  6. Inhibitory effects of Aster spathulifolius extract on adipogenesis and lipid accumulation in 3T3‐L1 preadipocytes vol.68, pp.1, 2016, https://doi.org/10.1111/jphp.12485
  7. Anti‐melanogenic effects of Aster spathulifolius extract in UVB‐exposed C57BL/6J mice and B16F10 melanoma cells through the regulation of MAPK/ERK and AKT/GSK3β signalling vol.68, pp.4, 2013, https://doi.org/10.1111/jphp.12524
  8. Germacrone Attenuates Hyperlipidemia and Improves Lipid Metabolism in High-Fat Diet-Induced Obese C57BL/6J Mice vol.20, pp.1, 2013, https://doi.org/10.1089/jmf.2016.3811
  9. First Report of Rust Caused by Coleosporium asterum on Aster spathulifolius in Korea vol.101, pp.11, 2017, https://doi.org/10.1094/pdis-12-16-1713-pdn
  10. In vitro Antiviral Activity of Recombinant Antibodies of IgG and IgA Isotypes to Hemagglutinin of the Influenza A Virus vol.51, pp.6, 2017, https://doi.org/10.1134/s0026893317060024
  11. Prevention and Treatment of Influenza, Influenza-Like Illness, and Common Cold by Herbal, Complementary, and Natural Therapies vol.22, pp.1, 2017, https://doi.org/10.1177/2156587216641831
  12. Germacrone inhibits adipogenesis and stimulates lipolysis via the AMP-activated protein kinase signalling pathway in 3T3-L1 preadipocytes vol.69, pp.2, 2017, https://doi.org/10.1111/jphp.12674
  13. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus vol.10, pp.9, 2017, https://doi.org/10.1016/j.apjtm.2017.08.010
  14. Herbal Medicines with Antiviral Activity Against the Influenza Virus, a Systematic Review vol.46, pp.8, 2013, https://doi.org/10.1142/s0192415x18500854
  15. First Report of Powdery Mildew Caused by Podosphaera astericola on Aster spathulifolius in Korea vol.102, pp.5, 2018, https://doi.org/10.1094/pdis-09-17-1436-pdn
  16. Effect and Tolerability of the Combined Plant Extract (PAC) in Treatment of Acne Vulgaris vol.8, pp.2, 2018, https://doi.org/10.4236/jcdsa.2018.82009
  17. Antiviral Activities of Oleanolic Acid and Its Analogues vol.23, pp.9, 2013, https://doi.org/10.3390/molecules23092300
  18. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules vol.25, pp.21, 2013, https://doi.org/10.3390/molecules25214878