DOI QR코드

DOI QR Code

Performance Evaluation of Magnesium Bipolar Plate in Lightweight PEM Fuel Cell Stack for UAV

무인기용 경량 PEM 연료전지 스택용 마그네슘 분리판의 성능평가

  • Received : 2013.07.23
  • Accepted : 2013.09.23
  • Published : 2013.10.01

Abstract

A magnesium bipolar plate whose surface was protected by thinly deposited silver layer was investigated as an alternative to existing graphite bipolar plate of PEM fuel cells. Thin silver layer of $3{\mu}m$ was deposited on a magnesium alloy substrate by physical vapor deposition (PVD) method in an environment of $180^{\circ}C$. A number of tests were conducted on the fabricated magnesium based bipolar plates to determine their suitability for use in PEM fuel cell stacks. The test on corrosion resistance in the same pH condition as in a PEM operation demonstrated the layer protected the magnesium alloy substrate, while unprotected substrate suffered from severe corrosion. The contact resistance of the fabricated bipolar plate was less than $20m{\Omega}-cm^2$ which was superior to the conventional bipolar plates. A single cell was constructed using the fabricated bipolar plates and power output was measured. Due to the enhanced conductivity caused by low contact resistance, slight increase was observed in current density and output voltage. With low density of the magnesium substrate and ease on machining, the weight reduction of the stack of 30~40 % is possible to produce the same power output.

표면에 얇은 은(Ag)층이 증착된 마그네슘 분리판을 PEM 연료전지의 그라파이트 분리판의 대체 재질로 검토하였다. $180^{\circ}C$의 온도 환경에서 마그네슘 모재 표면에 $3{\mu}m$의 얇은 은층을 물리적 증착방법(PVD)을 이용하여 증착하였다. 제작된 마그네슘 분리판을 대상으로 PEM 연료전지 스택 적용 가능성을 확인하기 위하여 다수의 실험을 수행하였다. PEM 연료전지의 동작환경과 동일한 pH에서의 부식실험을 통하여 보호막이 형성된 마그네슘 분리판은 부식으로부터 모재를 적절히 보호하였지만 보호막이 형성되지 않은 경우 심각한 부식이 발생됨을 확인하였다. 제작된 마그네슘 분리판의 접촉저항은 $20m{\Omega}-cm^2$이하로 기존의 분리판 대비 우수한 성능을 보였다. 이러한 낮은 접촉저항으로 인하여 전기전도도가 개선되어 연료전지의 성능이 향상됨을 확인하였다. 마그네슘 모재의 낮은 밀도와 기계가공의 용이성 때문에 동일한 연료전지 스택의 출력을 기준으로 약 30~40 %의 중량절감이 가능한 것으로 판단되었다.

Keywords

References

  1. K. Joon, (1998), Fuel cells - a 21st century power system, Journal of Power Sources, 71, pp 12-18 https://doi.org/10.1016/S0378-7753(97)02765-1
  2. V. Metha, J.S. Cooper, (2003), Review and analysis of PEM fuel cell design and manufacturing, Journal of Power Sources, 114, pp 32-53 https://doi.org/10.1016/S0378-7753(02)00542-6
  3. P.L. Hetall, J.B. Lakeman, G.O. Mepated, P.L. Adcock, J.M. Moor, (1999), New materials for polymer electrolyte membrane fuel cell current collectors, Journal of Power Sources, 80, pp 235-241 https://doi.org/10.1016/S0378-7753(98)00264-X
  4. J. Wind, R. Spah, W. Kaiser, G. Bohm, (2002), Metallic bipolar plates for PEM fuel cells, J. Power Sources, 105, pp 256-260. https://doi.org/10.1016/S0378-7753(01)00950-8
  5. Allen Hermann, Tapas Chaudhuri, Priscila Spagnol, (2005), Bipolar plates for PEM fuel cells : A review, Int. J. Hydrogen Energy, 30, pp 1297-1302. https://doi.org/10.1016/j.ijhydene.2005.04.016
  6. H. Wang, M.A. Sweikart, J.A. Turner, (2003), Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, Journal of Power Sources, 115, pp 243-251 https://doi.org/10.1016/S0378-7753(03)00023-5
  7. J.E. Gray, B. Luan, (2002), Protective coatings on magnesium and its alloys-a critical review, Journal of Alloys and Compounds 336, pp 88-113 https://doi.org/10.1016/S0925-8388(01)01899-0
  8. A.S. Woodman, E.B. Anderson, K.D. Jayne, and M.C. Kimble, (1999), Development of Corrosion-Resistant Coatings for Fuel Cell Bipolar Plates, American Electroplaters and Surface Finishers Society, AESF SUR/FIN '99 Proceedings, 6/21-24.
  9. Georg Reiners, Michael Griepentrog, (1995), Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage, Surface and coatings Technology, 76-77, pp 809-814 https://doi.org/10.1016/0257-8972(95)02608-8
  10. F. Hollstein, R. Wiedemann, J. Scholz, (2003), Characteristics of PVD-coatings on AZ31hp magnesium alloys, Surface and coatings Technology, 162, pp 261-286 https://doi.org/10.1016/S0257-8972(02)00671-0
  11. P. Hones, M. Diserens, F. Levy, (1999), Characterization of sputter-deposited chromium oxide thin films, Surface and Coatings Technology, 120-121, pp 277-283 https://doi.org/10.1016/S0257-8972(99)00384-9
  12. Yue Hung, (2008), Performance Evaluation and Characterization of Metallic Bipolar Plates in a Proton Exchange Membrane(PEM) Fuel Cell, PhD Thesis, Stoney Brook University, pp 10-11
  13. D.P. Davies, P.L. Adcock, M. Turpin and S.J. Rowen, (2000), Bipolar plate materials for solid polymer fuel cells, J. Applied Electrochemistry, 30, pp 101-105 https://doi.org/10.1023/A:1003831406406
  14. Y. Wang and D.O. Northwood, (2007), Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells, Electrochimica Acta, vol. 52, no. 24, pp 6793-6798 https://doi.org/10.1016/j.electacta.2007.05.001
  15. Gullaume Lamour et al., Contact Angle Measurements Using a Simplified Experimental Setup, Journal of Chemical Education, vol. 87, No. 12, pp 1403-1407
  16. J. Ihonen, F. Jaouen, G. Lindberg, G. Sundholm, (2001), A novel polymer electrolyte fuel cell for laboratory investigation and in-situ contact resistance measurements, Electrochimica Acta, 46, pp 2899-2911 https://doi.org/10.1016/S0013-4686(01)00510-2
  17. D.P. Subedi, (2011), "Contact Angle Measurement for The Surface Characterization of Solids", the Himalayan Physics vol II, pp 1-4(deepaksubedi2001@yahoo.com)
  18. Po-Chang Lin, Benhamin Y. Park, Marc J. Madou, (2008), Development and Characterization of a miniature PEM fuel cell stack with carbon bipolar plates, Journal of power sources, 176, pp 207-214 https://doi.org/10.1016/j.jpowsour.2007.10.079
  19. R. Jiang, D. Chiu, (2001), Voltage-time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge, Journal of Power Sources, 92, pp 193-198 https://doi.org/10.1016/S0378-7753(00)00540-1