DOI QR코드

DOI QR Code

Development of RT-PCR and Nested PCR for Detecting Four Quarantine Plant Viruses Belonging to Nepovirus

RT-PCR과 nested PCR을 이용한 Nepovirus속 식물검역 바이러스 4종의 정밀진단

  • Lee, Siwon (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Kang, Eun-Ha (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Shin, Yong-Gil (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Lee, Su-Heon (School of Applied Biosciences, Kyungpook National University)
  • 이시원 (농림축산검역본부 식물검역기술개발센터) ;
  • 강은하 (농림축산검역본부 식물검역기술개발센터) ;
  • 신용길 (농림축산검역본부 식물검역기술개발센터) ;
  • 이수헌 (경북대학교 응용생명과학부)
  • Received : 2013.03.25
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

For quarantine purpose, we developed the RT- and nested PCR module of Tomato black ring virus (TBRV), Arabis mosaic virus (ArMV), Cherry leafroll virus (CLRV) and Grapevine fanleaf virus (GFLV). The PCR modules, developed in this study make diagnosis more convenient and speedy because of same PCR condition. And also, the methods are more accurate because it can check whether the result is contamination or not using the mutation-positive control. We discard or return the 27 cases of Nepovirus infection seed by employing the module past 3 years. This study provides a rapid and useful method for detection of four quarantine plant viruses.

본 연구에서는 식물검역바이러스 4종(TBRV, ArMV, CLRV 및 GFLV)을 RT-PCR과 nested PCR 방법으로 진단 할 수 있는 방법을 개발하였다. 본 연구에서 개발한 방법은 모두 같은 PCR 조건으로 검사자에게 편리성과 신속성을 높여줄 뿐 아니라, 돌연변이-양성대조구의 사용으로 실험 오염여부를 확인할 수 있어 더욱 정확하다. 개발한 방법으로 최근 3년 Nepovirus속 4종의 바이러스를 검사한 결과, 27건을 검출하여 검역처분 하였다. 본 연구 결과들은 앞으로도 수출입 식물에서 해당 바이러스들을 신속, 정밀하게 진단할 수 있는 방법으로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Animal, Plant and Fisheries Quarantine and Inspection Agency. 2013. List of plant quarantine viruses in Korea in newly revised in 2013. Res. Plant Dis. 19: 65-75. (In Korean)
  2. Caruso, P., Bertolini, E., Cambra, M. and Lopez, M. M. 2003. A new and sensitive co-operational polymerase chain reaction for rapid detection of Ralstonia solanacearum in water. J. Microbiol. Meth. 55: 257-272. https://doi.org/10.1016/S0167-7012(03)00161-1
  3. Choi, G. S., Lee, J. A., Cho, J. D., Chung, B. N., Cho, I. S. and Kim, J. S. 2009. Strawberry virus diseases occurring in Korea, 2007-2008. Res. Plant Dis. 15: 8-12. (In Korean) https://doi.org/10.5423/RPD.2009.15.1.008
  4. Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34: 475-483. https://doi.org/10.1099/0022-1317-34-3-475
  5. Francki, R. I. B., Milne R. G. and Hatta, T. 1985. Atlas of plant viruses. Vol. II, pp. 23-38. CRC Press, Boca Raton, Florida, USA.
  6. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. and Travers, S. E. 2006. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol. 44: 489-509. https://doi.org/10.1146/annurev.phyto.44.070505.143420
  7. Kim, D., Hyun, J., Hwang, H. and Lee, S. 2000. RT-PCR Detection of Citrus tristeza virus from early Satsuma mandarin and Cheju island. Plant Pathology J. 16: 48-51.
  8. Kim, Y. J., Park, S., Yie, S. W. and Kim, K. H. 2005. RT-PCR Detection of dsRNA Mycoviruses Infecting Pleurotus ostreatus and Agaricus blazei Murrill. Plant Pathology J. 21: 343-348. https://doi.org/10.5423/PPJ.2005.21.4.343
  9. Lee, J. S., Cho, W. K., Lee, S. H., Choi, H. S. and Kim, K. H. 2011a. Development of RT-PCR based method for detecting five non-reported quarantine plant viruses infecting the family Cucurbitaceae or Solanaceae. Plant Pathology J. 27: 93-97. https://doi.org/10.5423/PPJ.2011.27.1.093
  10. Lee, J. S., Cho, W. K., Choi, H. S. and Kim, K. H. 2011b. RT-PCR Detection of Five Quarantine Plant RNA Viruses belonging to Poty and Tospoviruses. Plant Pathology J. 27: 291-296. https://doi.org/10.5423/PPJ.2011.27.3.291
  11. Lee, S., Kang, E. H., Kim, Y. J., Kim, S. M. and Shin, Y. G. 2013. Detection of Carnation necrotic fleck virus and Carnation ringspot virus using RT-PCR. Res. Plant Dis. 19: 36-44. (In Korean) https://doi.org/10.5423/RPD.2013.19.1.036
  12. Murant, A. F. 1970. Tomato black ring virus. CMI/AAB Descriptions of Plant Viruses No. 38. Association of Applied Biologists, Wellesbourne, UK. Nelson, M. and McClelland, M. 1992. Use of DNA methyltransferase/endonuclease enzyme combinations for megabase mapping of chromosomes. Methods Enzymol. 216: 279-303. https://doi.org/10.1016/0076-6879(92)16027-H
  13. Nelson, M. and McClelland, M. 1992. Use of DNA methyltransferase/endonuclease enzyme combinations for megabase mapping of chromosomes. Methods Enzymol. 216: 279-303. https://doi.org/10.1016/0076-6879(92)16027-H
  14. Pan, Y. B., Burner, D. M. and Legendre, B. L. 2000. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetica 108: 285-295. https://doi.org/10.1023/A:1004191625603
  15. Park, M. R. and Kim, K. H. 2004. RT-PCR Detection of three non-reported fruit tree viruses useful for quarantine purpose in Korea. Plant Pathology J. 20: 147-154. https://doi.org/10.5423/PPJ.2004.20.2.147
  16. Priou, S., Gutarra, L. and Aley, P. 2006. An improved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovars 1 and 2A) in soil using DAS-ELISA. Plant Patholgy J. 55: 36-45. https://doi.org/10.1111/j.1365-3059.2005.01293.x

Cited by

  1. Development of a PCR Diagnostic System for Iris yellow spot tospovirus in Quarantine vol.30, pp.4, 2014, https://doi.org/10.5423/PPJ.NT.06.2014.0052
  2. Development of Nested PCR-Based Specific Markers for Detection of Peach Rosette Mosaic Virus in Plant Quarantine vol.56, pp.1, 2016, https://doi.org/10.1007/s12088-015-0548-2
  3. Development of a Specific Diagnostic System for Detecting Turnip Yellow Mosaic Virus from Chinese Cabbage in Korea vol.56, pp.1, 2016, https://doi.org/10.1007/s12088-015-0557-1
  4. Development and Verification of Nested PCR Assay for Detection ofTobacco rattle virusin Plant Quarantine vol.45, pp.1, 2015, https://doi.org/10.4167/jbv.2015.45.1.54
  5. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants vol.31, pp.4, 2015, https://doi.org/10.5423/PPJ.NT.06.2015.0110
  6. Plant quarantine isolated cultivation system in Korea and results of recorded in 2005-2012 vol.40, pp.4, 2013, https://doi.org/10.7744/cnujas.2013.40.4.281
  7. Development of PCR Diagnostic System for Detection of the Seed-Transmitted Tobacco Ringspot Virus in Quarantine vol.55, pp.2, 2015, https://doi.org/10.1007/s12088-015-0518-8
  8. Development of a PCR Diagnostic System for Detecting Andean Potato Mottle Virus Associated with Potato Quarantine in Korea vol.92, pp.4, 2015, https://doi.org/10.1007/s12230-015-9468-2
  9. Development and Optimization of a Reverse Transcription Hemi-Nested PCR Primer for the Detection of Potato Mop-Top Virus at Quarantine Inspection Sites in Korea vol.57, pp.2, 2017, https://doi.org/10.1007/s12088-016-0623-3
  10. Development and of Diagnostic System for Detection of Cowpea chlorotic mottle virus using by Nested PCR vol.41, pp.4, 2014, https://doi.org/10.7744/cnujas.2014.41.4.335
  11. Development of PCR-base Diagnostic System for the Detection of Andean potato latent virus vol.42, pp.2, 2015, https://doi.org/10.7744/cnujas.2015.42.2.105
  12. Development and Practical Use of RT-PCR for Seed-transmitted Prune dwarf virus in Quarantine vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.10.2013.0099
  13. Development of Nucleotide Primers for Dignostic RT-PCR and Nested PCR Detection of Three Seed-transmitted Viruses (CRLV, SpLV and WClMV) in Quarantine vol.48, pp.3, 2014, https://doi.org/10.14397/jals.2014.48.3.75
  14. Development of Nucleotide Primers for Diagnostic RT-PCR and Nested PCR Detection of Pelargonium zonate spot virus in Quarantine vol.48, pp.6, 2014, https://doi.org/10.14397/jals.2014.48.6.65
  15. Development of Diagnostic System for Detecting Tomato ringspot virus in Quarantine vol.49, pp.4, 2015, https://doi.org/10.14397/jals.2015.49.4.65