DOI QR코드

DOI QR Code

Organophosphorus Compounds Detection Using Suspended SWNT Films

부양형 탄소나노튜브 필름을 이용한 유기인 화합물 검출

  • Kim, Intae (Department of Mechanical Engineering, POSTECH) ;
  • An, Taechang (Department of Mechanical Design Engineering, Andong National University) ;
  • Lim, Geunbae (Department of Mechanical Engineering, POSTECH)
  • 김인태 (포항공과대학교 기계공학과) ;
  • 안태창 (안동대학교 기계설계공학과) ;
  • 임근배 (포항공과대학교 기계공학과)
  • Received : 2013.08.09
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

We developed a one-step method for fabrication of addressable suspended SWNT films and demonstrate excellent detection performance of paraoxon based on OPH-immobilized SWNT films for environmental monitoring. For dispersed SWNT suspension, COOH-SWNT was prepared by the oxidation of carbon nanotubes using acid treatment and sonication. Suspended SWNT-film was fabricated between cantilever electrodes by dielectrophoretic force and surface tension of the water meniscus. After that, OPH were immobilized on suspended SWNT-films by nonspecific binding for enzymatic hydrolysis of paraoxon. The electrical properties of the SWNT films were measured in real time at room temperature. Structurally suspended SWNT films from substrate surface made possible rapid and highly sensitive detection of target molecules with increased convectional and diffusional fluxes of the molecules and with a large binding surface area. SWNT film FET resulted in a real-time, label-free, and electrical detection of paraoxon to the concentration of ca. $10{\mu}m$ with a step-wise rapid response time of several seconds.

Keywords

References

  1. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, Vol. 287, No. 5459, pp. 1801-1804, 2000. https://doi.org/10.1126/science.287.5459.1801
  2. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors", Science, Vol. 287, No. 5453, pp. 622-625, 2000. https://doi.org/10.1126/science.287.5453.622
  3. K. Besteman, J. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as single-molecule biosensors", Nano Lett., Vol. 3, pp. 727-730, 2003. https://doi.org/10.1021/nl034139u
  4. K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, "Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors", Anal. Chem., Vol. 79, pp. 782-787, 2007. https://doi.org/10.1021/ac060830g
  5. H. Ryu, W. Choi, T. An, J. Heo, and G. Lim, "Fabrication and calibration of pH sensor using suspended CNT nanosheet", J. Sensor Sci. & Tech., Vol. 22, No. 3, pp. 207-211, 2013. https://doi.org/10.5369/JSST.2013.22.3.207
  6. H. So, K. Won, Y. H. Kim, B. Kim, B. H. Ryu, P. S. Na, H. Kim, and J. Lee, "Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements", J. Am. Chem. Soc., Vol. 127, pp. 11906-11907, 2005. https://doi.org/10.1021/ja053094r
  7. Q. Cao and J. A. Rogers, "Ultrathin films of singlewalled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects", Adv. Mater., Vol. 21, pp. 29-53, 2009. https://doi.org/10.1002/adma.200801995
  8. E. S. Snow, J. P. Novak, M. D. Lay, and F. K. Perkins, "1/f noise in single-walled carbon nanotube devices", Appl. Phys. Lett., Vol. 85, pp. 4172-4174, 2004. https://doi.org/10.1063/1.1812838
  9. A. Star, E. Tu, J. Niemann, J. P. Gabriel, C. S. Joiner, and C. Valcke, "Label-free detection of DNA hybridization using carbon nanotube network fieldeffect transistors", Proc. Natl. Acad. Sci. U. S. A., Vol. 103, pp. 921-926, 2006. https://doi.org/10.1073/pnas.0504146103
  10. H. R. Byon and H. C. Choi, "Network single-walled carbon nanotube-field effect transistors (SWNTFETs) with increased Schottky contact area for highly sensitive biosensor applications", J. Am. Chem. Soc., Vol. 128, pp. 2188-2189, 2006. https://doi.org/10.1021/ja056897n
  11. T. An, K. S. Kim, S. K. Hahn, and G. Lim, "Realtime, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET apstasensors", Lab Chip, Vol. 10, pp. 2052-2056, 2010. https://doi.org/10.1039/c005276k
  12. G. A. Zelada-Guillén, J. Riu, A. Düzgün, and F. Rius, "Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor13", Angew. Chem.-Int. Edit., Vol. 48, pp. 7334-7337, 2009. https://doi.org/10.1002/anie.200902090
  13. E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, "Chemical detection with a single-walled carbon nanotube capacitor", Science, Vol. 307, pp. 1942-1945, 2005. https://doi.org/10.1126/science.1109128
  14. P. E. Sheehan and L. J. Whitman, "Detection limits for nanoscale biosensors", Nano Lett., Vol. 5, pp. 803-807, 2005. https://doi.org/10.1021/nl050298x
  15. P. R. Nair and M. A. Alam, "Performance limits of nanobiosensors", Appl. Phys. Lett., Vol. 88, pp. 233120-233123, 2006. https://doi.org/10.1063/1.2211310
  16. D. R. Kim and X. Zheng, "Numerical characterization and optimization of the microfluidics for nanowire biosensors", Nano Lett., Vol. 8, pp. 3233-3237, 2008. https://doi.org/10.1021/nl801559m
  17. S. Chapalamadugu and G. R. Chaudhry, "Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates", Crit. Rev. Biotechnol., Vol. 12, No. 5-6, pp. 357-389, 1992. https://doi.org/10.3109/07388559209114232
  18. W. J. Donarski, D. P. Dumas, D. P. Heitmeyer, V. E. Lewis, and F. M. Raushel, "Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta", Biochemistry, Vol. 28, No. 11, pp. 4650-4655, 1989. https://doi.org/10.1021/bi00437a021
  19. J. Sherma, "Pesticides", Anal. Chem., Vol. 65, No. 12, pp. 40R-54R, 1993. https://doi.org/10.1021/ac00060a004
  20. J. T. Cang-Rong and G. Pastorin, "The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies", Nanotechnology, Vol. 20, p. 255102, 2009. https://doi.org/10.1088/0957-4484/20/25/255102
  21. X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige, "Aligning single-wall carbon nanotubes with an alternating-current electric field", Appl. Phys. Lett., Vol. 78, pp. 3714-3716, 2001. https://doi.org/10.1063/1.1377627
  22. M. Lu, M. Jang, G. Haugstad, S. A. Campbell, and T. Cui, "Well-aligned and suspended single-walled carbon nanotube film: Directed self-assembly, patterning, and characterization", Appl. Phys. Lett., Vol. 94, p. 261903, 2009. https://doi.org/10.1063/1.3151850
  23. K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, "Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors", Anal. Chem., Vol. 79, No. 2, pp. 782-787, 2007. https://doi.org/10.1021/ac060830g
  24. T. An, I. Kim, and G. Lim, "Nitrophenol detection using suspended SWNT films for environmental monitoring", Proc. of IEEE Conf. on Sensors, pp. 1514-1517, Hawaii, USA, 2010.
  25. K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, "Enzyme-coated carbon nanotubes as single-molecule biosensors", Nano Lett., Vol. 3, No. 6, pp. 727-730, 2003. https://doi.org/10.1021/nl034139u
  26. N. Liu, X. Cai, Y. Lie, Q. Zhang, M. B. Chan-Park, C. Li, W. Chen, and A. Mulchandani, "Singlewalled carbon nanotube based real-time organophosphate detector", Electroanalysis, Vol. 19, pp. 616-619, 2007. https://doi.org/10.1002/elan.200603761

Cited by

  1. Fabrication of Microbe-Attached SWNT Film for Biosensor Applications and Organophosphorus Compounds Detection vol.23, pp.1, 2014, https://doi.org/10.5369/JSST.2014.23.1.35
  2. Fabrication of Biofuel Cell Roll Using Flexible CNT Nanosheet Substrate vol.23, pp.6, 2014, https://doi.org/10.5369/JSST.2014.23.6.388