DOI QR코드

DOI QR Code

Analysis of Shallow Water Flow in Curved Channel Using Dispersion Stresses Method

분산응력법을 이용한 곡선수로에서의 천수흐름 해석

  • Received : 2013.02.13
  • Accepted : 2013.04.17
  • Published : 2013.09.30

Abstract

Most of the previous models for analysis of shallow water flow assumed the uniform velocity distributions over the flow depth so that they produced incorrect velocity prediction at meandering part due to the ignorance of secondary current. In this study, the vertical velocity profiles in longitudinal and transverse direction were decomposed as the mean and variation components, which resulted in additional dispersion stresses terms in momentum equations. The proposed model were applied at the channels with $30^{\circ}$, $90^{\circ}$, $270^{\circ}$ bends, and shallow water flow in curved channel was analyzed using dispersion stresses. The dispersion stresses acted as a sink or source in the momentum equations, which caused the transverse convection of momentum to shift from the inner bank to the outer bank.

기존 대부분의 천수흐름 해석모형에서는 연직방향으로 균일한 유속을 가정하였기 때문에 하천 만곡부에서 이차류의 영향을 고려하지 못하고 부정확한 흐름해석 결과를 도출하였다. 본 연구에서는 종횡방향 유속의 연직분포를 평균값과 이로부터의 변동량으로 분할하여 이 값들을 운동량 방정식에 대입하여 생성되는 추가적인 항인 분산응력을 포함하는 수치모형을 개발하였다. 제안된 모형을 $30^{\circ}$, $90^{\circ}$, $270^{\circ}$의 곡률을 가지는 수로에 적용하여 분산응력을 이용한 곡선수로에서의 천수흐름을 수치모의 하였다. 모의 결과, 운동량방정식에 포함된 분산응력항은 생성/소멸과 같은 역할을 하여, 만곡의 내측에서 외측으로 횡방향 운동량을 이동시키게 되므로 분산응력을 포함하지 않는 경우 보다 정확한 수치모의 결과를 제시하는 것으로 밝혀졌다.

Keywords

References

  1. Begnudelli, L., Valiani, A. and Sanders, B. F. (2010). "A balanced treatment of secondary currents, turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model for channel bends." Adv. Water Resour., Vol. 33, pp. 17-33. https://doi.org/10.1016/j.advwatres.2009.10.004
  2. Bernard, R. S. and Schneider, M. L. (1992). Depth-averaged numerical modeling for curved channels, Technical Report HL-92-9, Waterways Experiment Station, US Army Corps of Engineers.
  3. Chang, Y. C. (1971). Lateral mixing in meandering channels, Ph.D. Thesis, Univ. of Iowa.
  4. Flokstra, C. (1977). "The closure problem for depth-averaged two-dimensional flows." Proc. 18th IAHR, pp. 247-256.
  5. Ghamry, H. K. (1999). Two dimensional vertically averaged and moment equations for shallow free surface flows, Ph.D. Thesis, Univ. of Alberta.
  6. Ghamry, H. K. and Steffler, P. M. (2002). "Effect of applying different distribution shapes for velocities and pressure on simulation of curved open channels." J. Hydraul. Engrg., Vol. 128, No. 11, pp. 969-982. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:11(969)
  7. Ghamry, H. K. and Steffler, P. M. (2005). "Two-dimensional depth-averaged modeling of flow in curved open channels." J. Hydraul. Res., Vol. 43, No. 1, pp. 44-55. https://doi.org/10.1080/00221680509500110
  8. Ghanem, A. H. M. (1995). Two-dimensional finite element modeling of flow in aquatic habitats, Ph.D. Dissertation, University of Alberta, Edmonton, Alberta.
  9. Hicks, F. E., Jin, Y. C. and Steffler, P. M. (1990). "Flow near sloped bank in curved channel." J. Hydraul. Engrg., Vol. 116, No. 1, pp. 55-70. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(55)
  10. Hsieh, T. Y. and Yang, J. C. (2003). "Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation." J. Hydraul. Engrg., Vol. 129, No. 8, pp. 597-612. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:8(597)
  11. Hughes, T. J. R. and Brooks, A. (1979). A multidimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection Dominated Flows, T. J. R. Hughes, eds., AMD Vol. 34, New York, pp. 19-35.
  12. Jia, Y. and Wang, S. S. Y. (1998). "Numerical model for channel flow and morphological change studies." J. Hydraul. Engrg., Vol. 125, No. 9, pp. 924-933.
  13. Kikkawa, H., Ikeda, S. and Kitagawa, A. (1976). "Flow and bend topography in curved open channels." J. Hydraul. Engrg., Div., Vol. 102, No. 9, pp. 1327-1342.
  14. Kim, T. B. and Choi, S. U. (2009). "Simulation of flow characteristics in a Kinoshita meandering channel using the depth-integrated 2D numerical model." Proc.35th KSCE conference, pp. 691-694 (in Korean).
  15. Kim, T. B., Choi, B. W. and Choi, S. U. (2009). "A depth-integrated numerical model considering the secondary flows in the channel bend." Proc.2009 KWRA conference, pp. 555-559 (in Korean).
  16. Maynord, S. T. (1996). Open-channel velocity prediction using STREMR model, Technical Report HL-96-5, Waterways Experiment Station, US Army Corps of Engineers.
  17. Molls, T. and Chaudhry, M. H. (1995). "Depth-averaged open-channel flow model." J. Hydraul. Engrg., Vol. 121, No. 6, pp. 453-465. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(453)
  18. Odgaard, A. J. (1986). "Meander flow model. I: Development." J. Hydraul. Engrg., Vol. 112, No. 12, pp. 1117-1136. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:12(1117)
  19. Rozovskii, I. L. (1961). Flow of Water in Bends of Open Channels, Israel Program for Scientific Translations.
  20. Shiono, K. and Muto, Y. (1998). "Complex mechanisms in compound meandering channel with overbank flow." J. Fluid Mech., Vol. 326, pp. 221-261.
  21. Song, C. G. and Seo, I. W. (2012). "Numerical simulation of convection-dominated flow using SU/PG scheme." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 3B, pp. 175-183 (in Korean). https://doi.org/10.1007/s12206-010-0715-7
  22. Song, C. G., Seo, I. W. and Kim, Y. D. (2012). "Analysis of secondary current effect in the modeling of shallow flow in open channels." Adv. Water Resour., Vol. 41, pp. 29-48. https://doi.org/10.1016/j.advwatres.2012.02.003
  23. Tominaga, A. and Nezu, I. (1986). "Three-dimensional turbulent structure in a straight open channel flow with varying boundary roughness." Proc. of 3rd Asian Congress of Fluid Mech. pp. 608-611.
  24. Vasquez, J. A., Millar, R. G. and Steffler, P. M. (2006). Verticallyaveraged and moment of momentum model for alluvial bend morphology, River, Coastal and Estuarine Morphodynamics, G. Parker and M. H. Garcia, eds., Taylor & Francis, pp. 711-718.
  25. De Vriend, H. J. (1977). "A mathematical model of steady flow in curved shallow channels." J. Hydraul. Res. Vol. 15, No. 1, pp. 37-54. https://doi.org/10.1080/00221687709499748
  26. Wilson, C. A. M. E., Bates, P. D. and Hervouet, J. M. (2002). "Comparison of turbulence models for stage-discharge rating curve prediction in reach-scale compound channel flows using two-dimensional finite element methods." J. Hydrol., Vol. 257, pp. 42-58. https://doi.org/10.1016/S0022-1694(01)00553-4
  27. Ye, J. and McCorquodale, J. A. (1997). "Depth-averaged hydrodynamic model in curvilinear collocated grid." J. Hydraul. Engrg., Vol. 123, No. 5, pp. 380-388. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:5(380)