DOI QR코드

DOI QR Code

Variation on the Growth Rate of Plants by Submersion of High Turbidity - A Case Study on Salix Species -

고탁도 침수에 의한 하천식물의 성장률 변화 연구 - 버드나무속 3종을 대상으로 -

  • 김종태 (한국건설기술연구원 하천실험센터) ;
  • 김은진 (한국건설기술연구원 하천실험센터) ;
  • 강준구 (한국건설기술연구원 하천실험센터) ;
  • 여홍구 (한국건설기술연구원 하천실험센터)
  • Received : 2013.05.07
  • Accepted : 2013.08.05
  • Published : 2013.09.30

Abstract

High turbidity submersion due to torrential downpour is one of the factors that influences the plant growth. This study is focused on analyzing the plant's growth rate for Salix species such as gracilisyla, koreensis, glandulosa when these trees are waterlogged. The length of shoots for this control group in the natural state is 33.4% (gracilisyla), 24.3% (koreensis), 23.9% (glandulosa), however, they stopped growing in submersion. Compared to the leaf number of Salix species of this control group in the natural state, 144.5% (gracilisyla), 77.3% (koreensis), 40.3% (glandulosa) in the natural state 30 days, in 30 days submersion, the number of leaves is zero except koreensis. In the results of this experiment, Salix species stopped growing quickly when submersed. This study concludes that it is necessary to plant eco-friendly plants around the slope of the reservoir and dam where flooding takes place frequently.

집중호우에 의한 고탁도 침수는 식물 성장에 영향을 줄 수 있는 요소 중 하나이다. 따라서 본 연구에서는 버드나무속 식물인 갯버들, 버드나무, 왕버들을 이용하여 고탁도 침수 발생 시 식물 키 및 엽수를 파악하여 성장정도를 정량적으로 분석하였다. 식물 키에 대한 분석 결과 비침수 상태인 대조군에서는 30일 후 갯버들, 버드나무, 왕버들이 각각 33.4%, 24.3%, 23.9% 증가하였지만 고탁도의 침수가 시작되면 대부분 성장이 멈추었다. 엽수의 경우 대조군에서는 30일 후 갯버들, 버드나무, 왕버들이 각각 144.5%, 77.3%, 40.3% 증가하였지만 고탁도 침수가 30일 지속되면 버드나무를 제외한 식물의 엽수는 0개로 관찰되었다. 식물 성장에 대한 실험 결과 전반적으로 버드나무속 식물은 고탁도 침수가 지속되면 빠른 시간 내 성장이 멈추는 것으로 나타났다. 이 결과는 향후 침수가 빈번히 발생하는 임하호 및 상류하천 사면의 친환경적인 수목조성을 위한 기초자료가 될 것으로 판단한다.

Keywords

References

  1. Batiuk, R.A., Orth, R., Moore, K., Stevenson, J.C., Dennison, W., Staver, L., Carter, V., Rybicki, N.B., Hickman, R., Kollar, S., and Bieber, S. (1992). "Chesapeake Bay Submerged Aquatic Vegetation Habitat Requirements and Restoration Targets:A Technical Synthesis." U.S EPA Chesapeake Bay Program, pp. 235-249.
  2. Bibby, R.L., and Webster-Brown, J.G. (2005). "Characterization of urban catchment suspended urban particulate matter." Sci. Total Environ., Vol. 343, pp. 177-197. https://doi.org/10.1016/j.scitotenv.2004.09.041
  3. Choo, C.O., Koh, E.Y., Oh, S.J., Lee, S.W., Kim, B.K., Lee, J.E., and Kim, Y.K. (2006). "Environmental Geological Characteristics of Suspended Matter and Turbidity Water at Gachang Dam in 2004." J. Miner. Soc. Korea, Vol. 19, No. 1, pp. 49-61.
  4. Farve, M., Harriss, W., Dierberg, F., and Portier, K. (2004). "Association between phosphorus and suspended solids in everglades treatment wetland dominated by submerged aquatic vegetation."Wetland Ecology and Management, Vol. 12, pp. 365-375. https://doi.org/10.1007/s11273-004-4447-2
  5. Havens, K.E. (2003). "Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake." Hydrobiol, Vol. 493, pp. 173-186. https://doi.org/10.1023/A:1025497621547
  6. Kim, J.T., Kim, E.J., Kang, J.G., and Yeo, H.K. (2013). "Impact of Turbidity on Protected Plants along River Levees." The Journal of Engineering Geology, Vol. 23, No. 2, pp. 161-170. https://doi.org/10.9720/kseg.2013.2.161
  7. National Institute of Environmental Research (NIER) (2007). Effects of turbid water on aquatic ecosystem and control measure, NIER, Report 3, pp. 125-149.
  8. Oh, T.S., and Moon, Y.I. (2009). "An Evaluation of Extreme Precipitation based on Local Downpour using Empirical Simulation Technique." J. of Civil Engineering B, Vol. 29, No. 2, pp. 141-153.
  9. Park, J.W., Yu, S.H., Kim, S.Y., Lee, J.E., and Seo, E.W. (2008). "Effect of Turbid Water on the Phytoplankton Community in Imha Reservoir." J. of Life Science, Vol. 18, No. 12, pp. 1671-1678. https://doi.org/10.5352/JLS.2008.18.12.1671
  10. Park, S.B., Lee, S.K., Chang, K.H., Jeong, K.S., and Joo, G.J. (2002). "The Impact of Monsoon Rainfall (Changma) on the Changes of Water Quality in the Lower Nakdong River (Mulgeum)." Korean J. Limnol, Vol. 35, No. 3, pp. 160-171.
  11. Parker, J.T., Fossum, K.D., and Ingersoll, T.L. (2000). "Environmental audition-chemical characteristics of urban stormwater sediment and implications for environmental management."Maricopa County Environ., Arizona, Vol. 26, pp. 99-115.
  12. Pringle, C.M., Naiman, R.J., Bretschko, G., Karr, J.R., Oswood, M.W., Webster, J.R., Welcomme, R.L., and Win-terbourn, M.J. (1988). "Patch dynamics in lotic systems." J. N. Am. Benthol, Vol. 7, pp. 503-524. https://doi.org/10.2307/1467303
  13. Woo, H.S., Rhee, D.S., Ahn, H.K., and Lee, C.S. (2004), "Basic Investigation about Hydro-Geomorphologic and Vegetation Cover Changes on the Regulated River." Proceeding of Korea Water Resources Association, Korea, pp. 1335-1339.
  14. Yum, K.T., Park, E.S., Song, S.J., and Lee, G.S. (2007), "Consideration on the status and improvement factors of the turbid-water management in multi-purpose dam." J. Kor. Soc. Civil Engineers, Vol. 55, No. 12, pp. 123-131.
  15. Yum, K.T., Ban, Y.J., and Kim, Y.W. (2008), "Improvement and management condition of turbidity in dam." Water for future, Magazine ofKorea Water Resources Association, Vol. 41, No. 7, pp. 35-42. https://doi.org/10.3741/JKWRA.2008.41.1.035