DOI QR코드

DOI QR Code

A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Yongsik (Department of Financial Engineering Ajou University)
  • Received : 2012.12.19
  • Published : 2013.09.30

Abstract

An efficient and stable point collocation scheme based on a meshfree method is studied for the stationary incompressible Navier-Stokes equations. We describe the diffuse derivatives associated with the moving least square method. Using these diffuse derivatives, we propose a point collocation method to fit in solving the Navier-Stokes equations which improves the stability of the direct point collocation scheme. The convergence of the numerical solution is investigated from numerical examples. The driven cavity ow and the backward facing step ow are implemented for the reliability of the scheme. Also, the viscous ow on complicated geometry is successfully calculated such as the ow past a circular cylinder in duct.

Keywords

References

  1. N. R. Aluru, A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Engng. 47 (2000), 1083-1121. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N
  2. B. F. Armaly, F. Durst, and J. C. Pereira, Experimental and theoritical investigation of backward-facing step flow, J. Fluid Mech. 127 (1983), 473-496. https://doi.org/10.1017/S0022112083002839
  3. S. N. Atluri, H. G. Kim, and J. Y. Cho, A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG) methods, Comput. Mech. 24 (1999), 348-372. https://doi.org/10.1007/s004660050457
  4. H. J. Choe, D. W. Kim, H. H. Kim, and Y. S. Kim, Meshless method for the stationary incompressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 4, 495-526. https://doi.org/10.3934/dcdsb.2001.1.495
  5. H. J. Choe, D. W. Kim, and Y. S. Kim, Meshfree method for the non-stationary incom- pressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 1, 17-39. https://doi.org/10.1066/S10014060002
  6. C. A. Duarte and J. T. Oden, An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
  7. J. Furst and T. Sonar, On meshless collocation approximations of conservation laws: Preliminary investigations on positive schemes and dissipation models, Z. Angew. Math. Mech. 81 (2001), no. 6, 403-415. https://doi.org/10.1002/1521-4001(200106)81:6<403::AID-ZAMM403>3.0.CO;2-T
  8. R. A. Gingold and J. J. Monaghan, Smoothed Particle Hydrodynamics: theory and ap- plication to non-spherical stars, Monthly Notices of the Royal Astronomical Society 181 (1977), 275-389.
  9. F. C. Gunther and W. K. Liu, Implementation of boundary conditions for meshless methods, Comput. Methods Appl. Mech. Engrg. 163 (1998), no. 1-4, 205-230. https://doi.org/10.1016/S0045-7825(98)00014-0
  10. D. W. Kim and H. K. Kim, Point collocation method based on the FMLSRK approximation for electromagnetic field analysis, IEEE Trans. on Magnetics 40 (2004), 1029-1032. https://doi.org/10.1109/TMAG.2004.824612
  11. D. W. Kim and Y. S. Kim, Point collocation methods using the fast moving least square reproducing kernel approximation, Internat. J. Numer. Methods Engrg. 56 (2003), no. 10, 1445-1464. https://doi.org/10.1002/nme.618
  12. Y. S. Kim, D. W. Kim, S. Jun, and J. H. Lee, Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engng. 196 (2007), no. 33-34, 3095-3109. https://doi.org/10.1016/j.cma.2007.01.018
  13. S. Li and W. K. Liu, Synchronized reproducing kernel interpolation via multiple wavelet expansion, Comput. Mech. 21 (1998), 28-47. https://doi.org/10.1007/s004660050281
  14. S. Li and W. K. Liu, Reproducing kernel hierarchical partition of unity. I. Formulation and theory, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 251-288. https://doi.org/10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I
  15. S. Li and W. K. Liu, Reproducing kernel hierarchical partition of unity. II. Applications, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 289-317. https://doi.org/10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P
  16. W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, Reproducing kernel particle methods for structural dynamics, Internat. J. Numer. Methods Engrg. 38 (1995), no. 10, 1655-1679. https://doi.org/10.1002/nme.1620381005
  17. W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids 20 (1995), no. 8-9, 1081-1106. https://doi.org/10.1002/fld.1650200824
  18. W. K. Liu, S. Li, and T. Belytschko, Moving least-square reproducing kernel methods. I. Methodology and convergence, Comput. Methods Appl. Mech. Engrg. 143 (1997), no. 1-2, 113-154. https://doi.org/10.1016/S0045-7825(96)01132-2
  19. Y. Y. Lu, T. Belytschko, and L. Gu, A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Engrg. 113 (1994), no. 3-4, 397-414. https://doi.org/10.1016/0045-7825(94)90056-6
  20. Y. Luo and U. Haussler-Combe, A generalized nite-difference method based on min- imizing global residual, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 13-14, 1421-1438. https://doi.org/10.1016/S0045-7825(01)00331-0
  21. J. M. Melenk and I. Babuska, The partition of unity nite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  22. B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech. 10 (1992), 307-318. https://doi.org/10.1007/BF00364252
  23. X. Zhang, X. Liu, K. Song, and M. W. Lu, Least-square collocation meshless method, Internat. J. Numer. Methods Engrg. 51 (2001), no. 9, 1089-1100. https://doi.org/10.1002/nme.200
  24. Y. Zhao and B. Zhang, A high-order characteristics upwind FV method for incompressible ow and heat transfer simulation on unstructured grids, Comput. Methods Appl. Mech. Engrg. 190 (2000), no. 5-7, 733-756. https://doi.org/10.1016/S0045-7825(99)00443-0
  25. T. Zhu, J. Zhang, and S. N. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems, Comput. Mech. 22 (1998), no. 2, 174-186. https://doi.org/10.1007/s004660050351